中国地质大学(武汉)
优化设计报告
姓名:
学号:
班级:
指导老师:
优化设计三个题目的分析与MATLAB程序编制
1.
解:
(1)确立设计变量和目标函数
取设计变量,其中h为人字架的高,D为钢管平均直径。
根据题意,要求钢管总质量m最小,因此可建立目标函数:
根据已知条件,目标函数转化为
(2)确定约束条件
边界约束条件
人字架高度限制:(人字架高度非负)
钢管平均直径限制:(钢管平均直径非负)
性能约束
求解钢管最大压应力
由对称性可知两支座水平方向上所受力大小相同,方向相反,设为F’,竖直方向上所受支持力大小相同,方向向上,设为N。以人字架为研究对象,作如图所示的受力分析图。
列平衡方程
解得
以人字架为研究对象,作如图所示的受力分析图。
列平衡方程
解得
其中
用A-A截面截断杆件,以A-A截面左下方的杆件为研究对象,作如图所示的受力分析图。
列平衡方程
其中
解得
故钢管的应力为
钢管的最大压应力为
求解失稳临界应力
截面的惯性矩为
惯性半径为
柔度为
失稳临界应力为
约束条件
由钢管压应力不超过许用压应力的条件得
代入已知参数得
由钢管压应力不超过失稳临界应力的条件得
代入已知参数得
由边界约束条件得
(1)编写目标函数m文件并以文件名objfun保存在MATLAB目录下的work文件夹中。
%约束非线性优化问题
%1-
function f=objfun(x)
f=*(x(1)^2+)^*x(2);
(2)编写非线性约束函数的m文件并以文件名confun保存在MATLAB目录下的work文件夹中。
%2-
function [c,ceq]=confun(x)
%非线性不等式约束
c(1)=*10^4*(x(1)^2+)/x(1)+*10^7*(x(1)^2+)^...
/(x(1)*x(2))-*10^8;
c(2)=*10^4*(x(1)^2+)/x(1)+*10^7*(x(1)^2+)^...
/(x(1)*x(2))-*10^11*(x(2)^2+*10^(-6))/(x(1)^2+);
%非线性等式约束
ceq=[];
(3)在命令窗口调用优化程序。
%3-优化函数应用
x0=[1 1]; %设计变量初值
A=[];b=[]; %没有线性不等式约束
Aeq=[];beq=[]; %没有线性等式约束
lb=[0,0]; %设计变量下限
ub=[]; %设计变量上限
[xopt,fval]=fmincon(***@objfun,x0,A,b,Aeq,beq,lb,ub,***@confun)
运行结果如下:
,,,。
2.
解:
(1)确立设计变量和目标函数
取设计变量,其中为轴长,为轴的直径。
根据题意,要求轴的质量应为最轻,因此可建立目标函数:
根据已知条件,目标函数转化为
(2)确定约束条件
边界约束条件
轴长限制:(轴长不得小于8cm)
轴的直径限制:(轴的直径非负)
性能约束
弯曲应力的限制:
扭剪应力的限制:
挠度的限制:
约束条件
由弯曲应力的限制得到的约束条件为
代入已知参数得
由扭剪应力的限制得到的约束条件为
代入已知参数得
由挠度的限制得到的约束条件为
代入已知参数得
由边界约束条件得
(1)编写目标函数m文件并以文件名objfun保存在MATLAB目录下的work文件夹中。
%约束非线性优化问题
%1-
function f=objfun(x)
f=*10^3*x(1)*x(2)^2;
(2)编写非线性约束函数的m文件并以文件名confun保存在MATLAB目录下的work文件夹中。
%2-
function [c,ceq]=confun(x)
%非线性不等式约束
c(1)=*10^4*x(1)/(x(2)^3)-*10^8;
c(2)=/(x(2)^3)-8*10^7;
优化设计-中国地质大学(武汉) 来自淘豆网m.daumloan.com转载请标明出处.