下载此文档

新人教版七年级数学家庭辅导_试题精品.doc


文档分类:中学教育 | 页数:约48页 举报非法文档有奖
1/48
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/48 下载此文档
文档列表 文档介绍
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想函数思想方程思想数形结合思想转化思想
注重对几何图形运动变化能力的考查
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5),就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,,才能更好的培养学生解题素养,.
专题一:建立动点问题的函数解析式
函数揭示了运动变化过程中量与量之间的变化规律,,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.
一、应用勾股定理建立函数解析式
例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.
(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.
(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).
H
M
N
G
P
O
A
B
图1
(3)如果△PGH是等腰三角形,试求出线段PH的长.
解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2.
(2)在Rt△POH中, , ∴.
在Rt△MPH中,
.
∴=GP=MP= (0<<6).
(3)△PGH是等腰三角形有三种可能情况:
①GP=PH时,,解得. 经检验, 是原方程的根,且符合题意.
②GP=GH时, ,解得. 经检验, 是原方程的根,但不符合题意.
③PH=GH时,.
综上所述,如果△PGH是等腰三角形,那么线段PH的长为或2.
二、应用比例式建立函数解析式
例2(2006年·山东)如图2,在△ABC中,AB=AC=1,点D,=CE=.
(1)如果∠BAC=30°,∠DAE=105°,试确定与之间的函数解析式;
A
E
D
C
B
图2
(2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.
解:(1)在△ABC中,∵AB=AC,∠BAC=30°,
∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.
∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,
又∠DAB+∠ADB=∠ABC=75°,
∴∠CAE=∠ADB,
∴△ADB∽△EAC, ∴,
∴, ∴.
O

F
P
D
E
A
C
B
3(1)
(2)由于∠DAB+∠CAE=,又∠DAB+∠ADB=∠ABC=,且函数关系式成立,
∴=, 整理得.
当时,函数解析式成立.
例3(2005年·上海)如图3(1),在△ABC中,∠ABC=90°,AB=4,BC=3. 点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,⊥ED,交射线AB于点P,交射线CB于点F.

P
D
E
A
C
B
3(2)
O
F
(1)求证: △ADE∽△AEP.
(2)设OA=,AP=,求关于的函数解析式,并写出它的定义域.
(3)当B

新人教版七年级数学家庭辅导_试题精品 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数48
  • 收藏数0 收藏
  • 顶次数0
  • 上传人追风少年
  • 文件大小0 KB
  • 时间2011-08-20