电子商务数据挖掘方法论文 .doc电子商务数据挖掘方法论文
摘要: 电子商务是现代商业的主流趋势,如何充分利用网络技术和数据库技术发挥企业优势,成为企业制胜的法宝。本文介绍了常用的数据挖掘方法,以及在电子商务领域的应用,分析了利用数据挖掘技术建设动态、高效电子商务的可行性。
关键词:数据挖掘电子商务数据库
一、引言
电子商务是指以Inter网络为载体、利用数字化电子方式开展的商务活动。随着网络技术和数据库技术的飞速发展,电子商务正显示越来越强大的生命力。电子商务的发展促使公司内部收集了大量的数据,并且迫切需要将这些数据转换成有用的信息和知识,为公司创造更多潜在的利润。利用数据挖掘技术可以有效地帮助企业分析从网上获取的大量数据,发现隐藏在其后的规律性,提取出有效信息,进而指导企业调整营销策略,给客户提供动态的个性化的高效率服务。
二、数据挖掘技术
数据挖掘(Data Mining),又称数据库中的知识发现(Kno=>B1∧B2∧…Bm,其中,Ak(k=1,2,…, m),Bj(j=1,2,…,n)是数据库中的数据项。有Support(A=>B)=P(A∪B),Confidence(A=>B)=P(A|B)。数据项之间的关联,即根据一个事务中某些数据项的出现可以导出另一些数据项在同一事务中的出现。关联分析的目的是挖掘出隐藏在数据间的相互关系。关联规则用于寻找在同一个事件中出现的不同项的相关性,比如在一次购买活动中所买不同商品的相关性。关联分析的典型例子是购物篮分析,描述顾客的购买行为,可以帮助零售商决定商品的摆放和捆绑销售策略。如著名的(面包+黄油→牛奶)例子就属于关联分析:在超市中,90%的顾客在购买面包和黄油的同时,也会购买牛奶。直观的意义是:顾客在购买某种商品时有多大的倾向会购买另外一些商品。找出所有类似的关联规则,对于企业确定生产销售、产品分类设计、市场分析等多方面是有价值的。
类聚分析就是直接比较样本中各事物之间的性质,将性质相近的归为一类,而将性质差别较大的分在不同的类。对变量聚类计算变量之间的距离,对样本聚类则计算样本之间的距离。它的目的是使得属于同一类别的个体之间的距离尽可能小,而不同类别上的个体间的距离尽可能大。
聚类分析用于把有相似特性的客户、数据项集合到一起。在电子商务中, 聚类分析常用于市场细分。根据已有客户的数据,利用聚类技术将市场按客户消费模式的相似性分为若干细分市场,以进行有针对性的市场营销,提供更适合、更满意的服务。如自动给一个特定的客户聚类发送销售邮件,为一个客户聚类动态地改变一个特殊的站点等。通过对聚类的客户特征的提取,电子商务网站还可以为客户提供个性化的服务。
分类系统是基于遗传算法的机器学习中的一类,它包括一个简单的基于串规则的并行生成子系统、规则评价子系统和遗传算法子系统。分类系统正在被人们越来越多地应用于科学、工程和经济领域中,是目前遗传算法研究领域中一个非常活跃的领域。
分类分析是数据挖掘中应用最多的方法。分类要解决的问题是为一个事件或对象归类, 既可以用于分析已有的数据,也可以用来预测未来的数据。分类通过分析已知分类信息的历史数据,总结出一个预测模型,预测哪些人可能会对邮寄广告、产品目录等有反应,可以针对这一类客户的特点展
电子商务数据挖掘方法论文 来自淘豆网m.daumloan.com转载请标明出处.