下载此文档

湖北省黄冈市蕲春县2021 2021学年高一数学上学期期中试题含解析.doc


文档分类:中学教育 | 页数:约16页 举报非法文档有奖
1/16
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/16 下载此文档
文档列表 文档介绍
该【湖北省黄冈市蕲春县2021 2021学年高一数学上学期期中试题含解析 】是由【知识徜徉土豆】上传分享,文档一共【16】页,该文档可以免费在线阅读,需要了解更多关于【湖北省黄冈市蕲春县2021 2021学年高一数学上学期期中试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。12015-2016学年湖北省黄冈市蕲春县高一(上)期中数学试卷 一、选择题(共12小题,每小题5分,满分60分)={1,2,3,4},N={﹣2,2},下列结论成立的是( )?M ∪N=M ∩N=N ∩N={2} =R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(?UQ)( )A.{x|﹣1≤x<5} B.{x|1<x<5} C.{x|1≤x<5} D.{x|﹣1≤x<1} ( )=与y=()4 =与y==与y=? =与y= (x)=,则f(3)为( ) (x)=2x+x﹣2的零点所在的一个区间是( )A.(﹣2,﹣1) B.(﹣1,0) C.(0,1) D.(1,2) (x)=2015x+m图象不过第二象限,则m的取值范围是( )≤﹣1 <﹣1 ≤﹣2015 <﹣2015 =,b=,c=,则a,b,c的大小关系为( )<b<c <a<c <c<a <c<b 8.( )A.(﹣∞,2] B.(0,+∞) C.[2,+∞) D.[0,2] ,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的( )2A. B. C. D. (x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是( )A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(1,2) C.(﹣2,1)∪(2,+∞) D.(﹣2,1)∪(1,2) ≠0,函数,若f(1﹣a)=f(1+a),则a的值为( )A. B. C. D. (x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若对所有的x∈[﹣1,1]及任意的a∈[﹣1,1]都满足f(x)≤t2﹣2at+1,则t的取值范围是( )A.[﹣2,2] B.{t|t≤﹣或t或=0}C.[﹣,] D.{t|t≤﹣2或t≥2或t=0} 二、填空题(共4小题,每小题5分,满分20分)=|x﹣a|的图象关于直线x=2对称,则a= . (x)满足,则f(2)= . (x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是. ?x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是. 3三、解答题(共6小题,满分70分)17.(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣)0﹣(3)+()﹣2+(×)4. ={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(?RN);(2)若M∪N=M,求实数a的取值范围. (x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间. ,设有A,(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(,230).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠? (x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.(1)求a,b,c的值.(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0. (x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围. 42015-2016学年湖北省黄冈市蕲春县高一(上)期中数学试卷参考答案与试题解析 一、选择题(共12小题,每小题5分,满分60分)={1,2,3,4},N={﹣2,2},下列结论成立的是( )?M ∪N=M ∩N=N ∩N={2}【考点】集合的包含关系判断及应用.【专题】集合.【分析】由M={1,2,3,4},N={﹣2,2},则可知,﹣2∈N,但是﹣2?M,则N?M,M∪N={1,2,3,4,﹣2}≠M,M∩N={2}≠N,从而可判断.【解答】解:A、由M={1,2,3,4},N={﹣2,2},可知﹣2∈N,但是﹣2?M,则N?M,故A错误;B、M∪N={1,2,3,4,﹣2}≠M,故B错误;C、M∩N={2}≠N,故C错误;D、M∩N={2},.【点评】本题主要考查了集合的包含关系的判断,解题的关键是熟练掌握集合的基本运算. =R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(?UQ)( )A.{x|﹣1≤x<5} B.{x|1<x<5} C.{x|1≤x<5} D.{x|﹣1≤x<1}【考点】交、并、补集的混合运算.【专题】计算题;对应思想;定义法;集合.【分析】先化简集合P,求出?UQ,再计算P∩(?UQ)的值.【解答】解:∵集合U=R,P={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},Q={x|x≥1},∴?UQ={x|x<1}∴P∩(?UQ)={x|﹣1≤x<1}.故选:D.【点评】本题考查了集合的化简与运算问题,是基础题目. ( )=与y=()4 =与y==与y=? =与y=【考点】判断两个函数是否为同一函数.【专题】函数思想;分析法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,函数y==x2(x∈R),与函数y==x2(x≥0)的定义域不同,所以不是同一函数;对于B,函数y==x(x∈R),与函数y==x(x≠0)的定义域不同,所以不是同一函数;5对于C,函数y==(x≤﹣1或x≥0),与函数y=?=(x≥0)的定义域不同,所以不是同一函数;对于D,函数y=(x≠0),与函数y==(x≠0)的定义域相同,对应关系也相同,:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目. (x)=,则f(3)为( ) 【考点】分段函数的应用.【专题】计算题;函数的性质及应用.【分析】由分段函数的解析式,先运用第二段,再由第一段,即可得到所求值.【解答】解:f(x)=,可得f(3)=f(4)=f(5)=f(6)=6﹣5=:C.【点评】本题考查分段函数的运用:求函数值,考查运算能力,属于基础题. (x)=2x+x﹣2的零点所在的一个区间是( )A.(﹣2,﹣1) B.(﹣1,0) C.(0,1) D.(1,2)【考点】函数零点的判定定理.【专题】计算题.【分析】利用函数的零点判定定理,先判断函数的单调性,然后判断端点值的符合关系.【解答】解:∵f(x)=2x+x﹣2在R上单调递增又∵f(0)=﹣1<0,f(1)=1>0由函数的零点判定定理可知,函数的零点所在的一个区间是(0,1)故选C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反. (x)=2015x+m图象不过第二象限,则m的取值范围是( )≤﹣1 <﹣1 ≤﹣2015 <﹣2015【考点】指数函数的图像变换.【专题】数形结合;转化法;函数的性质及应用.【分析】根据指数函数的图象和性质进行求解即可.【解答】解:函数g(x)=2015x+m为增函数,若g(x)=2015x+m图象不过第二象限,6则满足g(0)≤0,即g(0)=1+m≤0,则m≤﹣1,故选:A.【点评】本题主要考查指数函数的图象和性质,. =,b=,c=,则a,b,c的大小关系为( )<b<c <a<c <c<a <c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用对数函数和指数函数的性质求解.【解答】解:∵0=<a=<=1,b=<=0,c=>=1,∴b<a<c,故选:B.【点评】本题考查对数值大小的比较,是基础题,解题时要注意对数函数和指数函数的性质的合理运用. 8.( )A.(﹣∞,2] B.(0,+∞) C.[2,+∞) D.[0,2]【考点】函数的值域.【专题】函数的性质及应用.【分析】根据函数≥0,而且﹣x2﹣2x+3=﹣(x+1)2+4≤4,从而求得函数的值域.【解答】解:∵函数≥0,而且﹣x2﹣2x+3=﹣(x2+2x﹣3)=﹣(x+1)2+4≤4,∴≤2,∴0≤f(x)≤2,故选D.【点评】本题主要考查求函数的值域, ,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的( )A. B. C. D.【考点】函数的图象.【专题】函数的性质及应用.【分析】水深h越大,水的体积v就越大,故函数v=f(h)是个增函数,一开始增长越来越快,后来增长越来越慢,图象是先凹后凸的.【解答】解:由图得水深h越大,水的体积v就越大,故函数v=f(h),当h∈[O,H],我们可将水“流出”设想成“流入”,这样每当h增加一个单位增量△h时,根据鱼缸形状可知,函数V的变化,开始其增量越来越大,但经过中截面后则增量越来越小,故V关于h的函数图象是先凹后凸的,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故选:B.【点评】本题考查了函数图象的变化特征,函数的单调性的实际应用,体现了数形结合的数学思想和逆向思维,属于中档题. (x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是( )A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(1,2) C.(﹣2,1)∪(2,+∞) D.(﹣2,1)∪(1,2)【考点】奇偶性与单调性的综合.【专题】数形结合;转化法;函数的性质及应用.【分析】根据条件判断函数的单调性,根据函数奇偶性和单调性之间的关系,作出函数f(x)的图象,利用数形结合将不等式进行转化即可解不等式即可.【解答】解:∵任意的x1,x2∈(﹣∞,0](x1≠x2),有,∴此时函数f(x)在(﹣∞,0]上为减函数,∵f(x)是偶函数,∴函数在[0,+∞)上为增函数,∵f(2)=0,∴f(﹣2)=﹣f(2)=0,作出函数f(x)的图象如图:则不等式<0等价为<0,即<0,8即或,即或,即x<﹣2或1<x<2,故不等式的解集为(﹣∞,﹣2)∪(1,2).故选:B.【点评】本题主要考查不等式的解集,利用函数奇偶性和单调性之间的关系是解决本题的关键. ≠0,函数,若f(1﹣a)=f(1+a),则a的值为( )A. B. C. D.【考点】分段函数的解析式求法及其图象的作法.【专题】计算题;分类讨论.【分析】由a≠0,f(1﹣a)=f(1+a),要求f(1﹣a),与f(1+a),需要判断1﹣a与1+a与1的大小,从而需要讨论a与0的大小,代入可求【解答】解:∵a≠0,f(1﹣a)=f(1+a)当a>0时,1﹣a<1<1+a,则f(1﹣a)=2(1﹣a)+a=2﹣a,f(1+a)=﹣(1+a)﹣2a=﹣1﹣3a∴2﹣a=﹣1﹣3a,即a=﹣(舍)当a<0时,1+a<1<1﹣a,则f(1﹣a)=﹣(1﹣a)﹣2a=﹣1﹣a,f(1+a)=2(1+a)+a=2+3a∴﹣1﹣a=2+3a即综上可得a=﹣故选A【点评】本题主要考查了分段函数的函数值的求解,解题的关键是把1﹣a与1+a与1的比较,从而确定f(1﹣a)与f(1+a),体现了分类讨论思想的应用. (x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若对所有的x∈[﹣1,1]及任意的a∈[﹣1,1]都满足f(x)≤t2﹣2at+1,则t的取值范围是( )A.[﹣2,2] B.{t|t≤﹣或t或=0}C.[﹣,] D.{t|t≤﹣2或t≥2或t=0}【考点】函数恒成立问题.【专题】函数的性质及应用.【分析】先由函数为奇函数求出f(1)=﹣f(﹣1)=1,然后由x∈[﹣1,1]时f(x)是增函数,f(x)≤f(1)=1得f(x)≤t2﹣2at+1即为1≤t2﹣2at+l,即2at≤t2恒成立,分类讨论求解即可.【解答】解:奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,则f(1)=1,又∵x∈[﹣1,1]时f(x)是增函数,∴f(x)≤f(1)=1,故有1≤t2﹣2at+l,即2at≤t2,①t=0时,显然成立,②t>0时,2a≤t要恒成立,则t≥2,③t<0时,t≤2a要恒成立,则t≤﹣2,故t≤﹣2或t=0或t≥2,.故选:D.【点评】本题解题的关键是综合利用函数的性质化简f(x)≤t2﹣2at+1,然后转化为恒成立问题求解,分类讨论求解. 二、填空题(共4小题,每小题5分,满分20分)=|x﹣a|的图象关于直线x=2对称,则a= 2 .【考点】函数的图象.【专题】转化思想;综合法;函数的性质及应用.【分析】结合题意根据函数y=|x﹣a|的图象关于直线x=a对称,可得a的值.【解答】解:由于函数y=|x﹣a|的图象关于直线x=a对称,再根据它的图象关于直线x=2对称,可得a=2,故答案为:2.【点评】本题主要考查函数的图象的对称性,属于基础题. (x)满足,则f(2)= .【考点】函数的值.【专题】计算题.【分析】通过表达式求出f(),然后求出函数的解析式,即可求解f(2)的值.【解答】解:因为,10所以.,∴.∴=.故答案为:.【点评】本题考查函数的解析式的求法,函数值的求法,考查计算能力,灵活赋值的能力及观察判断的能力. (x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是{a|a>} .【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】把函数f(x)解析式进行常数分离,变成一个常数和另一个函数g(x)的和的形式,由函数g(x)在(﹣2,+∞)为增函数得出1﹣2a<0,从而得到实数a的取值范围.【解答】解:∵函数f(x)==a+,结合复合函数的增减性,再根据f(x)在(﹣2,+∞)为增函数,可得g(x)=在(﹣2,+∞)为增函数,∴1﹣2a<0,解得a>,故答案为:{a|a>}.【点评】本题考查利用函数的单调性求参数的范围,属于基础题. ?x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(﹣∞,2) .【考点】特称命题.【专题】函数的性质及应用.【分析】若?x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则f(x)不是单调函数,结合二次函数和一次函数的图象和性质,分类讨论不同情况下函数的单调性,综合讨论结果可得答案.【解答】解:由题意得,即在定义域内,f(x):(1)若x≤1时,f(x)=﹣x2+ax不是单调的,

湖北省黄冈市蕲春县2021 2021学年高一数学上学期期中试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息