该【2023届高考数学一轮复习:函数的奇偶性与周期性专项练+ 】是由【jin2202537】上传分享,文档一共【12】页,该文档可以免费在线阅读,需要了解更多关于【2023届高考数学一轮复习:函数的奇偶性与周期性专项练+ 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:.. 1.R“X)F(x)=f(2-x),'/()*+,2-.,//(X)()A.*+1-2,-1-2*+13,4-2B.*+2*+13,4-.C.*+.*+13,4-2D.*+1-2,-1-.*+134-.:;(0,+8)?***@2()==^==-3~x3.R4x)EFGr+3)=Ar).'/(2)>1J(7)=%/MNOPQRS().(3,+00)C.(-00,-1)D.(1,+8)4.R/TEF/N+2)=/(U?***@.VN=/(-),W=/(),c=/(),/Nb,N\]^_()>h>>a>>c>>c>b5.`af(x)bc^defghS4,'/(-1)=2,//(2021)=().-2D.-(x)=exe~x,/(A),g(x)ijS89klmn()(x)|B./(x)g(x)(x)+g(x):..7.`ayR(x)+%/(2)=1,//(-2)=().'/(x)=ln(ar+Jx2+])/NPS(.-1C.±.`aqx*+y4z(N>0)'g(x)=f(x)+2019,/g(U{\P{]P|}S()//T(?A.(0,+oo)?***@2B.(0,+co)?***@.C.(0,+8)?***@2D.(0,+8)?***@.~0???)??-1,/~x<0??x?()-+IC.-e-r-lD.-e'A+S()A./?x?=x'+lB./?x?=ln-^-C.=FD./?A?=xsinx13.'Rf(x)}g(x)EFf(x)+g(x)=ex,/g(x)=()1A---2(e214.'/>N?=?d-?'?31-+?+<:?/???===0c=0D.?7=0,c=0Z#/?x?=ln|2x+l|XIn?X1],/????:..A.(?,+oo)?***@2B,(-?)?***@.C.(f,?***@2D.(-,-?)?***@.???16.'(W=/1-54?S/"+U17.`a?Ax)~¢0?y(A-)=xi,/£8)P.18.`a/Xx)~x<0?f(x)=Xe".'/(ln2)=8,?ijo=.19.'f(x)RS2~OVxVl?f(x)=4/f(-3+f(2)220.1§)iSR,'¨r+l)S41)=2,/44)+15)=.?a?-x2+2x,x>021.`a4x)=Nx=0.x2+ftix,x<0(1)?MmP?(2)'-?*+1-1,N-2-?***@2?MN.`ay=_/U)i1-1,1-:;..(1)?ˉ°g±23′?11,1-?μW)+/(§2)y(?+§2)4)?(2)'·1N)+41-N2)<0,?Ma.`a?U=1.(1)?M?P?(2)oˉ?/*)R?°(3)'g±2xwR,??à/(/7)+/(2/Xá)>0????Mk4§)Rg±2Mx?/(5+U=/(5-???.(1)ˉ?y=7(x)??èé;:..(2)'*1)=2,?,*2)+/(3)P;(3)'g(x)=f+?+3,y=|/(x)yg(x)?MaìawH,f(x)=(a-x)IM.(1)'í1,??)?*+?(2)'*x)^d§??à?2+íD?gò?x[_2,2]????MóOPQR.:..??a?a°×Sf(x)?^defgh*+?ùúò?f(x)*+1-2,-I-2.;×Sf(x)=f(2-x),f(x)=f(-x),ü?f(-x)=f(2-x),YS2.ò?*+13,4-?}*+11,2-?ùTY*+13,4-..ü??a?A.y=/S?EF?à.B.y=RS(0,+8)?***@2EF?à.=log>iS(0,Ioo),Sáá?EF?à.D.y=-31Sáá?EF?à.ü°??a?×S-x+3)=yu),ò??0R?3Sò??7)=47X9)=42).;×S_/(%)ò?/(-2)=/?ò?/(7)=/(2)>1,ò?”>1.ü°??a?V/(X)EF/(x+2)="X),JS2.?dN=/(-)=/(-),^=/(-)=/()=/(-),c=/()=/(-),-<-<-.f(x)1?1,0-?***@.N>c>Z?.??a?×S/*)bc^defghS4,ò?éUSò?/(2021)=/(505x4+l)=/(I)==-2ü°:..??a?/(x),g(x)ijSR,üêò?ijS/?,f(-x)=e~x-}-ex=f(x),f(x)S.g( x)=e-ex= g(x),g(x)S.1g( DI=I g(x)l=lg(x)llg(x)lSA?ì;f( x)g(-x)=/a)[ g(x)]= /1(x)g(x),ò?f(x)g(x)SB?ì??íg(r)i=fa)ka)i,ò?fa)iga)ic?ì?/(x)+g(x)=2ej/( x)+^( x)=2e-A#-[/,(x)+g(x)],ò?f(x)+g(x)?Dmn.ü°??a?>=/(H+x.\/(x)+x=/(-x)-x~x=2?/(2)+2=/(-2)-2,;f(2)=l"(-2)=5ü??a?×Sf(x)=ln(or++i),ò?4 §)+?)=++l)+]n(or+Jf+])=o???ò?14(1-/y2+1]=0,Y(1/y2=0???ò?1 2=0,Y?=±1.~4=1?f(x)=ln(x+GTT),R,(T)+/(X)=O,ü?e2?~N=T?/(x)=ln(-x+V77T),iSR,M/(-x)+/(x)=O,ü?e2?ü°??a???/ò*+[-??(N>0)??^defgh÷a/(X){\P{]P|}S0,.?(ù=/(U+2019,444g(x'="x)g+239,:..g(x)*=/(Mj2019,g*L+=/*)2+2019+/*).+2019=4038ü°??a?×SiS{ê§0},é^defgh?/(ü=-/(?ò?“yS.;×Sy=d((),+?)?***@2(.t0)?***@2?y=g=<3(0,+?)?***@.(t0)?***@.ò?/(x)=FXg(0,+?)?***@2(-?,0)?***@2.ü°??a????/(%)§|0?f(x)=ex-\.~x<0?T>0,f(x)=-f(-x)=-ex+\?/(x)=e7+l./(!="#$f(-x)=-fMt*/M&'R)*/(-x)=/(%),.“0)&'R)g(-2=-g(x),fM+g(x)=e\f(-x)+g(-x)=f(x)-g(x)=e~x,3**g(x)=89/(2=(ex-e~x)(ax2+-+c);&/?,=>?@*,A"CR,f(F=fM,DA(ex-e-x)(ax2+bx+c)=(e-x-ex)(ax2-bx+c),EFG(ex-e~K)(2ax2+2c)=0,Hex-exIJ&0,=L2M+20J&0,Aa=0Oc-0,?PQR0$/@)=0P@*DITU:..VWXTU***@c.>x)=ln|2x+lYln|2x-l|G“X);&Y|[[\;Y^_`abcde,.f(-X)=1II|1-2A|In|2r-l|=ln|2A-l|-ln|2x+l|=/(x),/(x)&;)fghAC$/(A)=ln(2x+l)-ln(l-Zr),Q)=ln(2x+1)'(Xi))jklmy=ln(l-2x)'Y;,C|)jkln"(X)'o)jklm,ghp$/(x)=ln(-2x-l)-ln(l-2x)=ln|^1=ln^l+^-j-^,4=1+q'(-r-?)jkln=';sjklmtuvwjkxfy5/(X)')jklnDTU.-1{>(|=1-}tu-~]&*ex+[(^+1)fy”(x)=l?&?!>(0)=1?=0,e+1e+IfG“2=1VW0=1z0=X1..?=1$+(X)=1----,U(-X)=\^=-(%),O?;^_bcde“X)&.??&51z-.-4/(8)=?=4,=&&VW/(8)=/(8)=Y??&54:..18.-3=&f(x)@Ox>0$XxvO,f(x)=-f(-x)=e-M..=&ln2e(O,l),/(In2)=8,VW??2=8,???We&?dG-aln2=31n2,VW->=3,Aa=-.-2:Ax)@??&2.2)=?0)=0,=L/(-1)+7(2)=-24-0=-:/(x+l)&*?)@?X1+1)=?+1),x)y(o)=o,\/(x+1)=/(-4+1)=1),?x+2)=-Ar),r+4)=ym+2+2)=X?x+2)=/m),\A2@??&4???M=4))=0,?=?)=2,)4)+?5)=0+2=2.??&.(D2/(1,3.(1)?xVO,?r>0,VW?Xx)=,(,X)2+2( X)= / 2X..Xx)&VW/(x)._***@xVO$fi_x)=x2+2x=x2-\-rrvctVWM=2.(2)??K0'-1,>X2)jklm?w?0??:..y?c1VWIV?3,¤0?¥|§@¨1,3?.22.¨1a??-¨2a0<ˉ<1.?5¨1a°±52X/+X2=o,89IQμ?·.2M+X2<0,?X1SX/VX201,=&?Ta'o-1,1?)***@nO&VW?sa~X2,=~fi,X2,,+M2a>+/¨X2a?¨X/+x2aV0?·.2?+P>0,?1?/?X[2?X1,àFf°,+ˉT2a<á?+.*X2a?¨M+X2aV0?·.?)G°d????Co-1,1?,è.5+ê3a?¨?+?2ì0J?·.¨2a=&/¨1-0+41Xaa<0e/0/a<-/¨1Xí=?>-1a,oo<a2<2VW-W';o-1,1?)***@nGXIKa-lKln0K0<2\-a2>a-\a2+a-2<0Gò23.¨1a1-¨2a°±??-ó^<-?¨1aq3>?;&&,OF0a@/¨0a=0,G0=1L$/0a=2-2-3ùú/¨ta=X/¨?,A/ü@.¨2a??dY2C¨-8,+8a,OY?2%<2*2,¨-a>¨ga,_***@f¨àa-áa=2V-a2?+?=2R28+¨{f{{f<°A/¨X|a</¨Wa/¨Xa'¨-8+2a)***@m.¨3a3¨/-?X"2-9è>%a@,y/¨/Xé>/,X2fa.f¨xa'YO,+OO)***@mGAY<3/-xd??xeRJ?·33ê=3/X”ìí?)Ode?x=.O33x=1$y=3/_”??á¥&Xó.o12:..24.(1)3,(2)-2,(3)4=0.33????5(1)fG/&+3)=-/(X&??@'R)G-/(-x)=/(x),/(x)=/(x+3)-(2)tu*x÷T=3W/(2)=/(-l)=-/(D=-2,/(3)=/(0)=0-(3)f°±y=|/(?@*y=|f(?g(x)@*Gg(x)=f+W+3&*4=0.???5(1)/ù+[)qX/4X2O/(X!=X/0)y/(3+x)=/[|+(1+x)]=-/[|-(1+x)]=-/(-x)=/(x),VWy=f(!@??O7=3@?X???.(2)=&/ü&'R)VWf(0)=0,Of(-D=-f(1)=-2,.7=******@y=f(x)X???VW/(2)+/(3)=/(-1)+/(3)=-2+0=-2-(3)=&y=|/(x)|-g(x)@*Of°±y=|/(?@*VWg*)=f+ü+3&*Ag(-x)=g(x)J?·._@(-X)2+0(-Y)+3=?+ü+3J?·_***@lax=0J?·=a=0,VW0=0&.(I)kmt?],(-00,0),()(2)+00).1)=(1!"<0,X20/(x)=(l-x)x=-U-i)2+^,+,x)-[0/]01234-(3y°)0134xvO/(x)=(x-l)x=(x-^)2-l,+/)-(oo,0)0134;<=>?@)A2B(C0),(1,+oo);(2)EFX)1G34HIRl)=K1),LMC=0,N/(X)=T|X|,O1G34ENa=0,/(x)=-x|x|,+/"*)]=/|x],T1IVxw[-2,2],wiff[f(x)]=2+fn>x3\x\^>m>5+w>nvcr+1Zxw[[2,2]x2+le[l,5],^_`4b='d+1=+1)+e[[2,X+1X+1X+1X+1:..fg+1=/[1,5],+hC=+;[2-[1,5]=i2=5a+y-2max=y,EN“2,4?1=`+jkx"+155lhm4nAopqr1s0t.
2023届高考数学一轮复习:函数的奇偶性与周期性专项练+ 来自淘豆网m.daumloan.com转载请标明出处.