该【数学北师大八年级的上册的新编《探索勾股定理一》同步练习1 】是由【泰山小桥流水】上传分享,文档一共【3】页,该文档可以免费在线阅读,需要了解更多关于【数学北师大八年级的上册的新编《探索勾股定理一》同步练习1 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。word整理版学习参考资料《探索勾股定理一》同步练习1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3),以Rt△ABC的三边为直径分别向外作三个半圆,、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()S1-S2=+S2=+S3<-S3=S1四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。(S=36)5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、(此题为2012?庆阳中考题)=_____________。《探索勾股定理一》习题答案(a)如图(1)分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用表示S1、S2、S3则它们有S2+S3=S1关系.(b)如图(2)分别以直角三角形ABC三边向外作三个正方形,其面积表示S1、S2、+S3=S1关系.(c)如图(3)分别以直角三角形ABC三边向外作三个正三角形,面积表示S1、S2、S3,则它们有S2+S3=:::(a)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(b)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(c)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、:解:(1)S3=πAC2,S2=πBC2S1=AB2∴S2+S3=S1.(2)S2+S3=S1…(4分)由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,…(8分)∵三角形ABC是直角三角形,又∵AC2+BC2=AB2…(10分)∴S2+S3=S1.(3)S1=AB2S2=BC2S3=AC2∴S2+S3=:此题主要涉及的知识点:三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式,:勾股定理;::运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,:解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=+S2+S3+S4=1+3=:4.
数学北师大八年级的上册的新编《探索勾股定理一》同步练习1 来自淘豆网m.daumloan.com转载请标明出处.