二次函数知识点
相关概念及定义
二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,.
二次函数的结构特征:
⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵是常数,是二次项系数,是一次项系数,是常数项.
二次函数各种形式之间的变换
二次函数用配方法可化成:的形式,其中.
二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.
二次函数解析式的表示方法
一般式:(,,为常数,);
顶点式:(,,为常数,);
两根式:(,,是抛物线与轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,.
二次函数图象的画法
五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).
画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.
抛物线的三要素:开口方向、对称轴、顶点.
的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;
相等,抛物线的开口大小、形状相同.
对称轴:平行于轴(或重合),轴记作直线.
顶点坐标:
,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
抛物线中,与函数图像的关系
二次项系数
二次函数中,作为二次项系数,显然.
⑴当时,抛物线开口向上,越大,开口越小,反之的值越小,开口越大;
⑵当时,抛物线开口向下,越小,开口越小,反之的值越大,开口越大.
总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.
总结:
常数项
⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;
二次函数知识点 来自淘豆网m.daumloan.com转载请标明出处.