下载此文档

2021-2022学年北京市丰台区名校中考联考数学试题含解析.doc


文档分类:中学教育 | 页数:约20页 举报非法文档有奖
1/20
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/20 下载此文档
文档列表 文档介绍
该【2021-2022学年北京市丰台区名校中考联考数学试题含解析 】是由【1875892****】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【2021-2022学年北京市丰台区名校中考联考数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2021-2022中考数学模拟试卷注意事项:,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。;,字体工整、笔迹清楚。,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分),正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是A. B. C. ,既是轴对称图形又是中心对称图形的有( ) 、N在以AB为直径的圆O上,∠MON=x°,∠MAN=y°,则点(x,y)一定在() ,它的俯视图是( ),在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为( )A. B. ,两数在数轴上对应的点如图所示,下列结论正确的是()A. B. C. ,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:转盘总次数10203050100150180240330450“和为7”出现频数27101630465981110150“和为7”,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为() ( )+3a2=5a4 B.(﹣)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2 ÷4ab=+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是( )+x2=1 ?x2=﹣1 C.|x1|<|x2| +x1=,数1800000000用科学记数法表示为( )××××1010二、填空题(本大题共6个小题,每小题3分,共18分),点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠:,它们是按一定规律排列的,,,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,,容器内的水量y(单位:升)与时间x(单位:分),:4ax2-ay2=、解答题(共8题,共72分)17.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高(1)△ACD与△ABC相似吗?为什么?(2)AC2=AB?AD成立吗?为什么?18.(8分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,△;设点B的坐标为(t,0),其中t>,.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈,cos37°≈,tan37°≈,=,)20.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙.(8分)某花卉基地种植了郁金香和玫瑰两种花卉共30亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)(1)设种植郁金香x亩,两种花卉总收益为y万元,求y关于x的函数关系式.(收益=销售额﹣成本)(2)若计划投入的成本的总额不超过70万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?22.(10分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,.(12分)某品牌牛奶供应商提供A,B,C,,对全校订牛奶的学生进行了随机调查,:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?24.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,,以高出进价的50%?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】如图作,FN∥AD,交AB于N,=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,、B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,、B【解析】由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.【详解】∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,∴∠MAN=∠MON,∴,∴点(x,y).【点睛】本题考查了圆周角定理及正比例函数图像的性质,、D【解析】试题分析:,左边和中间都是2个正方形,右上角是1个正方形,:简单组合体的三视图5、D【解析】解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+、C【解析】根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A.?∵b<a<0,∴a+b<0,故本选项错误;B.?∵b<a<0,∴ab>0,故本选项错误;C.?∵b<a<0,∴a>b,故本选项正确;D.?∵b<a<0,∴b?a<0,、A【解析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,,随实验次数的增多,、B【解析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.【详解】+3a2=5a2,故本选项错误;B.(?)-2=4,正确;C.(a+b)(?a?b)=?a2?2ab?b2,故本选项错误;÷4ab=2,.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、、D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,,要看把原数变成a时,小数点移动了多少位,>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1800000000=×109,故选:C.【点睛】×10n的形式,其中1≤|a|<10,n为整数,、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.【详解】连结BD,如图,

2021-2022学年北京市丰台区名校中考联考数学试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数20
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1875892****
  • 文件大小556 KB
  • 时间2025-01-17
最近更新