该【2021-2022学年北京市第六十六中学中考五模数学试题含解析 】是由【1875892****】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2021-2022学年北京市第六十六中学中考五模数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2021-2022中考数学模拟试卷考生请注意:、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分),有下面四个结论:;;;,其中正确的结论是???A. B. C. :日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是( )、6、5 、5、6 、5、6 、6、,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,点O的对应点B恰好落在双曲线y=kx(x>0)上,则k的值为() ,要使□ABCD成为矩形,需添加的条件是()=BC B.∠ABC=90° ⊥BD D.∠1=∠,将RtABC绕直角项点C顺时针旋转90°,得到A'B'C,连接AA',若∠1=20°,则∠B的度数是()° ° ° °( ) (1+x)>1+3x的解集在数轴上表示为( )A. B. C. (1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是( )>b <=b ,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为( )A. B. C. .±3 、填空题(共7小题,每小题3分,满分21分)、n在数轴上的位置如图所示,则(m+n)(m-n)________0,(填“>”、“<”或“=”)“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,、解答题(共7小题,满分69分)18.(10分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,.(5分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).(1)当x为何值时,OP∥AC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162==,=,=)20.(8分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.21.(10分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,.(10分)如图,在△ABC中,∠C=90°,E是BC上一点,ED⊥AB,:△ABC∽△.(12分)某汽车专卖店销售A,:本周销售额为62万元,销售情况如下表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?24.(14分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.①等腰三角形两腰上的中线相等;②等腰三角形两底角的角平分线相等;③有两条角平分线相等的三角形是等腰三角形;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.②时,由图像可知此时,即,故②正确.③由对称轴,可得,所以错误,故③错误;④当时,由图像可知此时,即,将③中变形为,代入可得,故④.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。2、D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;、B【解析】作AC⊥y轴于C,ADx轴,BD⊥y轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90°,点O的对应B点,所以相当是把△AOC绕点A逆时针旋转90°得到△ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,1),∴AC=1,OC=1.∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B点坐标为(2,1),∴k=2×1=.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=﹣、B【解析】根据一个角是90度的平行四边形是矩形进行选择即可.【详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;B、是一内角等于90°,可判断平行四边形ABCD成为矩形;C、是对角线互相垂直,可判定平行四边形ABCD是菱形;D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B.【点睛】本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②、B【解析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,、C【解析】求出<<,推出4<<5,即可得出答案.【详解】∵<<,∴4<<5,∴:C.【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,、B【解析】按照解一元一次不等式的步骤求解即可.【详解】去括号,得2+2x>1+3x;移项合并同类项,得x<1,所以选B.【点睛】、A【解析】【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,-2<0得,当x12时,y1>y2.【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,所以,,1<4,所以,a>【点睛】本题考核知识点::判断一次函数中y与x的大小关系,、A【解析】根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“Sn=()n﹣2”,依此规律即可得出结论.【详解】如图所示,∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣=2018时,S2018=()2018﹣2=().【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn=()n﹣2”.10、C【解析】试题解析:∵∴、填空题(共7小题,每小题3分,满分21分)11、>【解析】根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定m+n以及m?n的符号,可得结果.【详解】解:根据题意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>>.【点睛】本题考查了整式的加减和数轴,、×1【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,,要看把原数变成a时,小数点移动了多少位,>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将235000000用科学记数法表示为:×:×1.【点睛】×10n的形式,其中1≤|a|<10,n为整数,、1.【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴44+x=14,解得:x=1,:1.【点睛】此题主要考查了利用频率估计概率,、9π
2021-2022学年北京市第六十六中学中考五模数学试题含解析 来自淘豆网m.daumloan.com转载请标明出处.