该【2021-2022学年安徽省滁州市全椒县重点中学中考数学考试模拟冲刺卷含解析 】是由【1875892****】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2021-2022学年安徽省滁州市全椒县重点中学中考数学考试模拟冲刺卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2021-2022中考数学模拟试卷注意事项:,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。。,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。,确定后必须用黑色字迹的签字笔描黑。,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分),-2,5,,-,负数的个数是(). ,正六边形ABCDEF中,P、Q两点分别为△ACF、△=2,则PQ的长度为何?( ) ﹣2 ﹣,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A. B. C. ( )﹣ab=4 ÷a2=a4 C. D.(a2b)3=() B.-1 C. ,则a的取值范围()A. B. C. +a-9=0的解是x=2, ,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程()A. . ,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是( ) 、填空题(本大题共6个小题,每小题3分,共18分)①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).:,在直角坐标平面xOy中,点A坐标为,,,AB与x轴交于点C,那么AC:.⊙M的圆心在一次函数y=x+2图象上,⊙M与y轴相切时,,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=、解答题(共8题,共72分)17.(8分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?18.(8分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,,图中从左到右各长方形的高度之比为3:4:5:10:8,;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?19.(8分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、(结果精确到2m)参考数据:sin48°≈,cos48°≈,tan48°≈,≈.(8分)阅读下列材料,解答下列问题:,这种变形叫做因式分解,,(平方差公式、完全平方公式)+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a):(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c2﹣6c+8分解因式;(2)结合材料1和材料2完成下面小题:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+.(8分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)22.(10分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,,会选择哪一条规则,.(12分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣(元)与每件销售价x(元)?如果能,求出此时的销售价格;如果不能,,在中,,为边上的中线,:;若,,、选择题(共10小题,每小题3分,共30分)1、B【解析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-、C【解析】先判断出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【详解】解:如图,连接PF,QF,PC,QC∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-.【点睛】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=12AP?h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=12AD?h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=12PD?h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△、A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.:;、B【解析】根据同底数幂的除法,合并同类项,积的乘方的运算法则进行逐一运算即可.【详解】解:A、5ab﹣=4ab,此选项运算错误,B、a6÷a2=a4,此选项运算正确,C、,选项运算错误,D、(a2b)3=a6b3,此选项运算错误,故选B.【点睛】此题考查了同底数幂的除法,合并同类项,积的乘方,、C【解析】原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:==,故选:C.【点睛】此题考查了分式的混合运算,、A【解析】分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.【详解】解①得x<20解②得x>3-2a,∵不等式组只有5个整数解,∴不等式组的解集为3-2a<x<20,∴14≤3-2a<15,故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=. 9、A【解析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x-2)=2x+:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,、D【解析】根据垂径定理,圆周角的性质定理即可作出判断.【详解】∵P是弦AB的中点,CD是过点P的直径.∴AB⊥CD,弧AD=弧BD,故①正确,③正确;∠AOB=2∠AOD=4∠ACD,故②,因而④:①②③.故选:D.【点睛】本题主要考查了垂径定理,圆周角定理,(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.
2021-2022学年安徽省滁州市全椒县重点中学中考数学考试模拟冲刺卷含解析 来自淘豆网m.daumloan.com转载请标明出处.