下载此文档

2025年人教中考数学培优 易错 难题(含解析)之反比例函数及详细答案.pdf


文档分类:中学教育 | 页数:约23页 举报非法文档有奖
1/23
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/23 下载此文档
文档列表 文档介绍
该【2025年人教中考数学培优 易错 难题(含解析)之反比例函数及详细答案 】是由【小屁孩】上传分享,文档一共【23】页,该文档可以免费在线阅读,需要了解更多关于【2025年人教中考数学培优 易错 难题(含解析)之反比例函数及详细答案 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:..以家为家,以乡为乡,以国为国,以天下为天下。——《管子》一、反比例函数真题与模拟题分类汇编(难题易错题),点P(x,y)与Q(x,y)≤x≤b1212时,有﹣1≤y﹣y≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b12上是“非相邻函数”.例如,点P(x,y)与Q(x,y)分别是两个函数y=3x+1与y=2x﹣112图象上的任一点,当﹣3≤x≤﹣1时,y﹣y=(3x+1)﹣(2x﹣1)=x+2,通过构造函数12y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y﹣y≤112成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y﹣y=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,12∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y﹣y≤1,12即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y﹣y=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,12∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y﹣y≤1,即,12∴0≤a≤1(3)解:y﹣y=﹣(﹣2x+4)=+2x﹣4,构造函数y=+2x﹣4,12∵y=+2x﹣4:..饭疏食,饮水,曲肱而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。——《论语》∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤,∵函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y﹣y≤1,即,12∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y﹣y=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在12﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y﹣y≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻12函数”;(2)y﹣y=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣122x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y﹣y≤1,即120≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y﹣y≤1,即1≤a≤2,所以a的最大值是2,,一般情况下,一节课40分钟中,,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y=kx+20,11把B(10,40)代入得,k=2,1∴y=2x+:..学而不知道,与不学同;知而不能行,与不知同。——黄睎设C、D所在双曲线的解析式为y=,2把C(25,40)代入得,k=1000,2∴当x=5时,y=2×5+20=30,11当,∴y<y12∴第30分钟注意力更集中.(2)解:令y=36,1∴36=2x+20,∴x=81令y=36,2∴,∴∵﹣8=>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x=5时和进行比较得到1y<y,得出第30分钟注意力更集中;(2)当y=36时,得到x=8,当y=36,得到12112,﹣8=>19,所以经过适当安排,,已知直线y=x与双曲线y=交于A、B两点,且点A的横坐标为.(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、:..百学须先立志。——朱熹M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.【答案】(1)解:把x=代入,得y=,∴A(,1),把点代入,解得:;(2)解:∵把y=3代入函数,得x=,∴C,设过,两点的直线方程为:,把点,,代入得:,解得:,∴,设与轴交点为,则点坐标为,∴;(3)解:设点坐标,由直线解析式可知,直线与轴正半轴夹角为,∵以、、、为顶点的四边形是有一组对角为的菱形,在直线上,∴点只能在轴上,∴点的横坐标为,代入,解得纵坐标为:,根据,即得:,解得:.:..天将降大任于斯人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为。——《孟子》故点坐标为:或.【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据求解即可;(3)设点坐标,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得,,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.【答案】(1)解:把A(﹣2,b)代入,得b=﹣=4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5,得﹣2k+5=4,解得k=,所以一次函数解析式为y=x+5;(2)解:将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,根据题意方程组只有一组解,:..勿以恶小而为之,勿以善小而不为。——刘备消去y得﹣=x+5﹣m,整理得x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4××8=0,解得m=9或m=1,即m的值为1或9.【解析】【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(-2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=,又与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式=0得到关于m的方程,,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:;=3.:..吾日三省乎吾身。为人谋而不忠乎?与朋友交而不信乎?传不习乎?——《论语》由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S=(-m)(m+3)=m2-m+2=(m+)2+,△PAD∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为:..百川东到海,何时复西归?少壮不努力,老大徒伤悲。——汉乐府(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,,在矩形OABC中,OA=6,OC=4,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?【答案】(1)解:∵在矩形OABC中,OA=6,OC=4,∴B(6,4),∵F为AB的中点,∴F(6,2),又∵点F在反比例函数(k>0)的图象上,∴k=12,∴该函数的解析式为y=(x>0)(2)解:由题意知E,F两点坐标分别为E(,4),F(6,),∴,====,:..勿以恶小而为之,勿以善小而不为。——刘备∴当k=12时,=3最大【解析】【分析】)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,,已知直线与x、y轴交于M、N,若将N向右平移个单位后的N,,恰好落在反比例函数的图像上.(1)求k的值;(2)点P为双曲线上的一个动点,过点P作直线PA⊥x轴于A点,交NM延长线于F点,过P点作PB⊥.①用含有m的代数式表示点E、F的坐标②找出图中与△EOM相似的三角形,并说明理由.【答案】(1)解:当时,,,.把代入得,(2)解:①由(1)知..当时,,.当时,,,:..好学近乎知,力行近乎仁,知耻近乎勇。——《中庸》∴E(2-,).②,,,,,,,由一次函数解析式得∠OME=∠ONF=45°【解析】【分析】(1)当x=0时,求出y=2,得出N(0,2),由平移的性质得出N'(3,2).把(3,2)代入y=得k=6.(2)①由(1)可设P(m,).当x=m时,求出y=?m+2,即F(m,2-m);当y=时,求出x=2?,即E(2-,).②∵ON=2,EM=,OM=2,NF=,从而得出OMNF=∠OME=∠ONF=45°;推出ΔEOM~,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,:..好学近乎知,力行近乎仁,知耻近乎勇。——《中庸》∴AB==5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y=的图象经过D点,∴4=,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y=,得y=,∴M点的纵坐标为:﹣4=,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.:..丹青不知老将至,贫贱于我如浮云。——杜甫(1)求抛物线的解析式及顶点D的坐标;(2)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(3)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【答案】(1)解:函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)解:将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,故点P(,﹣);△PBC(3)解:存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,Q+QC最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,:..志不强者智不达,言不信者行不果。——墨翟故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.【解析】【分析】(1)将坐标(1,0),B(3,0)代入计算即可得出抛物线的解析式,即可计算出D的坐标.(2)将点B、C的坐标代入一次函数表达式计算,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),求出x的值即可.(3)存在,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,Q+QC最小值=AQ+HQ=AH,求出k值,::(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为:..操千曲尔后晓声,观千剑尔后识器。——刘勰________cm3.【答案】(1)解:,故A不能折叠成无盖正方体;,无盖的应该有5个小正方形,不能折叠成无盖正方体;;,无盖的应该有5个小正方形,:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2,576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,:..臣心一片磁针石,不指南方不肯休。——文天祥∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB?OC=4HB,∴HB=,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC===当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,:..乐民之乐者,民亦乐其乐;忧民之忧者,民亦忧其忧。——《孟子》从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB=,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+,经过点.(1)求抛物线的解析式;(2)如图1,直线交抛物线于,两点,若,求的值;(3)如图2,将抛物线向下平移个单位长度得到抛物线,抛物线的顶点为,交轴的负半轴于点,点在抛物线上.①求点的坐标(用含的式子表示);②若,求,的值.【答案】(1)解:已知抛物线的顶点坐标为,∴设抛物线的解析式为,把代入得:6=16a-2,解得:,∴抛物线的解析式为(2)解:设直线交轴点,则点的坐标,:..勿以恶小而为之,勿以善小而不为。——刘备∴.∵,∴.∴.由得,∴,,∴,∴,∵,∴.(3)解:①,∴,∴顶点的坐标为,令,即.∴,(舍去),∴点的坐标为.②作轴于点,:..非淡泊无以明志,非宁静无以致远。——诸葛亮∵E(2-a,0),F(a,2a-2),∴,∴,又,∴,∵FH//y轴,∴∠FPO=∠PFH=°,∴∠FPO=∠EFP,∴PD=FD,设交轴于点,过D作DG⊥FH于G,则DG=OH,∵∠EFH=45°,∴,∵∠FEH=45°,a>2,∴OD=OE=a-2,∴PD=a-2-=,∵HO=a,∴,∴,(舍去),∴.【解析】【分析】(1)观察函数图像可知抛物线关于y轴对称,可得到点A时抛物线的顶点坐标,因此设函数解析式为y=ax2-2,再将点B的坐标代入求出a的值,即可得到抛物线C的解析式。(2)由点A,B的坐标,可求出AB的长,利用三角形的面积公式,可得到点N和点M的横坐标之差为1,再将两函数联立方程组,可转化为x2-2kx+4=0,利用一元二次方程根与系数的关系,求出方程的两个根之和和两根之积,由此可建立关于k的方程,解方程求出符合题意的k的值。(3)①利用函数平移规律,可得到C的函数解析式,由点F在抛物线C上,可建立m11:..士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已,不亦远乎?——《论语》与a的二次函数,再求出顶点P的坐标,将点P代入抛物线C,建立方程,求出方程的解,可得到符合题意的点E的坐标;②作FH⊥x轴于点H,用含a的代数式表示出点E,F的坐标,即可求出FH、EH的长,再去证明∠EFP=∠PFH=°,从而可以推出PD=FD;设EF交y轴于点D,过D作DG⊥FH于G,则DG=OH,利用解直角三角形求出PD,DF,OD的长,再建立关于a的方程,解方程求出a的值,可得到m的值。,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=________时,PQ∥AB(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,,理由如下:延长QE交AC于点D,∵将△PQC翻折,得到△EPQ,∴△QCP≌△QEP,∴∠C=∠QEP=90°,若PE⊥AB,则QD∥AB,∴△CQD∽△CBA,∴,∴,∴QD=,∵QC=QE=2t∴DE=∵∠A=∠EDP,∠C=∠DEP=90°,∴△ABC∽△DPE,∴:..百川东到海,何时复西归?少壮不努力,老大徒伤悲。——汉乐府∴,解得:,综上可知:当t=时,PE⊥AB【答案】(1)(2)解:∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴PC=AC-AP=6-t,CQ=2t,∴S△CPQ=CP?CQ==5,∴t2-6t+5=0解得t=1,t=5(不合题意,舍去)12∴当t=1秒时,△PCQ的面积等于5cm2(3)解:【解析】【解答】解:(1)∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴PC=AC-AP=6-t,CQ=2t,当PQ∥AB时,∴△PQC∽△ABC,∴PC:AC=CQ:BC,∴(6-t):6=2t:8∴t=:..古之立大事者,不惟有超世之才,亦必有坚忍不拔之志。——苏轼∴当t=,PQ∥AB【分析】(1)根据题意可得PC=AC-AP=6-t,CQ=2t,根据平行线可得△PQC∽△ABC,利用相似三角形对应边成比例可得PC:AC=CQ:BC,即得(6-t):6=2t:8,求出t值即可;(2)由S△CPQ=CP?CQ=5,据此建立方程,求出t值即可;(3)延长QE交AC于点D,根据折叠可得△QCP≌△QEP,若PE⊥AB,则QD∥AB,可得△CQD∽△CBA,利用相似三角形的对应边成比例,求出DE=,根据两角分别相等可证△ABC∽△DPE,利用相似三角形对应边成比例,,已知直线y=﹣2x+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上(1)求抛物线的解析式;(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB≌△POC?若存在,求出点P的坐标:若不存在,请说明理由.【答案】(1)解:由y=﹣2x+6=0,得x=3∴B(3,0).∵A(1,4)为顶点,∴设抛物线的解析为y=a(x﹣1)2+4,解得a=﹣1.∴y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)解:=0时,y=﹣x2+2x+3=3,∴C(0,3).∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△⊥x轴于M,作PN⊥y轴于N,则∠POM=∠PON=45°.:..先天下之忧而忧,后天下之乐而乐。——范仲淹∴PM=(m,m),则m=﹣m2+2m+3,解得m=.∵点P在第三象限,∴P(,).【解析】【分析】(1)根据待定系数法求解析式即可;(2)先确定出点C坐标,然后根据△POB≌△POC建立方程,,抛物线y=-x2+mx+n与x轴交于点A,B(A在B的左侧).(1)抛物线的对称轴为直线x=-3,AB=;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;(3)当m=4时,抛物线上有两点M(x,y)和N(x,y),若x<2,x>2,x+x11221212>4,试判断y与y的大小,【答案】(1)解:抛物线y=-x2+mx+n的对称轴为直线x=-3,AB=4.∴点A(-5,0),点B(-1,0).∴抛物线的表达式为y=-(x+5)(x+1)∴y=-x2-6x-5.(2)解:如图1,依题意,设平移后的抛物线表达式为:y=-x2+bx.∴抛物线的对称轴为直线x=,抛物线与x正半轴交于点C(b,0).∴b>,:..人人好公,则天下太平;人人营私,则天下大乱。——刘鹗∴点P的坐标(,),∵△OCP是等腰直角三角形,∴=∴b=2.∴点P的坐标(1,1).(3)解:如图2,当m=4时,抛物线表达式为:y=-x2+4x+n.

2025年人教中考数学培优 易错 难题(含解析)之反比例函数及详细答案 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数23
  • 收藏数0 收藏
  • 顶次数0
  • 上传人小屁孩
  • 文件大小1.75 MB
  • 时间2025-01-17
最近更新