该【人教版五年级数学上下册知识点 】是由【小屁孩】上传分享,文档一共【11】页,该文档可以免费在线阅读,需要了解更多关于【人教版五年级数学上下册知识点 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。 : .
百学须先立志。——朱熹
人教版五年级数学上下册知识点
五年级上册
一 小数乘法
1 小数乘整数
先按整数乘整数的法则进行计算 ,再看乘数里有几位小数 ,就从积的右边数出几位点上小数
点.
2 小数乘小数
先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小
数点。
3 小数四则混合运算及简便算法
1. 小数加减法法则
小数加减有规律,相同数位要对齐。个位对个位,十位对十位。……
十分位对着十分位,百分位对着百分位。……总而言之一句话,小数点要对齐。
计算结果是小数,末尾有 0 要划去。
小数乘法低位起,先按整数算出积。再看因数中小数共几位, 就从积的右边起,数出几
位点上点,末尾有 0 要划去。
小数除法高位起,看着除数找规律。除数是整数直接除,除到哪位商哪位。
不够商一零占位,商和被除数点对齐。除数是小数变整数,被除数小数点移同位 .
右边数位若不够,应该用零来补齐
二 对称、平移与旋转
1 轴对称图形
轴对称图形,是指在平面内沿一条直线 折叠 ,直线两旁的部分能够完全 重合的图形,
这条直线就叫做对称轴。比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。只是
轴对称图形的有 :角,五角星,等腰三角形,等边三角形,等腰梯形等等。
只是中心对称图形的有:平行四边形。
既不是轴对称 图形又不是中心对称图形有:不等边三角形,非 等腰梯形等。
一个图形既轴对称又中心对称一定有两条或两条以上的对称轴。
2 平移与旋转
平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图
形运动叫做图形的平移运动,简称平移。平移不改变物体的形状和大小。平移可以不是水
平的。
在平面内,把一个图形绕点 O 旋转一个角度的图形变换叫做旋转,点 O 叫做旋转中 : .
百学须先立志。——朱熹
心,旋转的角叫做旋转角,如果图形上的点 P 经过旋转变为点 Pˊ,那么这两个点叫做
这个旋转的对应点。
三 小数除法
1 除数是整数的小数除法
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对
齐,如果除到被除数的末尾仍有余数,就在余数后面添 0 再继续除。
2 除数是小数的小数除法
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除
数小数点也向右移几位(位数不够在被除数末尾用 0 补足)然后按照除数是整数的小数除
法进行计算。
3 商的近似值和循环小数
近似值是接近标准、接近完全正确的一个数字。 取近似数的方法叫做四舍五入法。 表示近
似值近似的程度,叫做近似数的精确度。
在四舍五入法、去尾法、收尾法 (进一法 )三种方法中,最常用的是四舍五入法。一般
地,用四舍五入法截得的近似数,截到哪一位,就说精确到哪一位。
4 小数四则混合运算
小数四则运算 的计算法则和整数的一样 :先算乘除后算加减,有 括号的要先算括号里面的。
简便运算:加法交换律,加法结合律 ,乘法交换律,乘法结合律 ,乘法分配律
四 简易方程
1 方程的意义
2 简易方程
3 稍复杂的方程
4 列方程解决问题
*弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什
么,最后算什么;
*确定每一步该怎样算,列出算式,算出得数;
*进行检验,写出答案。
5 较复杂的方程
五 多边形的面积
1 平行四边形面积的计算
2 三角形面积的计算
3 梯形面积的计算 : .
百学须先立志。——朱熹
4 组合图形面积的计算
六 因数与倍数
1 因数与倍数
假如 a÷ b=c(a 、b、c 都是整数),那么我们称b 和 c 就是 a 的因数。 需要注意的是,唯有被除
数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称a 为 b、c 的倍数。
在研究因数和倍数时,不考虑0。
在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。
定义:两个或多个整数公有的因数叫做它们的公因数。
两个或多个整数的公因数里最大的那一个叫做它们的最大公因数。
推论:1 是任意个数的整数之公因数。
两个成倍数关系的非零自然数之间,小的那一个数就是这两个数的最大公因数。
整除:若整数a 除以非零整数b,商为整数,且余数为零, 我们就说 a 能被 b 整除(或说b
能整除 a),记作b|a 。
质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大於1 的自然数中,除了1 和此整
数自身外,无法被其他自然数整除的数)
合数:除了 1 和它本身还有其它正因数。
1 只有正因数1,所以它既不是质数也不是合数。
若 a 是 b 的因数,且a 是质数,则称a 是 b 的质因数。例如2,3,5 均为 30 的质因数。6 不
是质数,所以不算。7 不是 30 的因数,所以也不是质因数。
只有公因数1,-1的两个整数叫互质数。
1 个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自
然数的倍数的个数是无限的。
所有不为零的整数都是0 的因数。
2 是最小的质数。
4 是最小的合数。
①一个整数能够被另一整数 整除,这个整数就是另一整数的倍数。如 15 能够被 3 或 5
整除,因此 15 是 3 的倍数,也是 5 的倍数。
②一个数除以另一数所得的商。如 a÷ b=c,就是说 a 是 b 的 c 倍,a 是 b 的倍数。 一
个数能整除它的积,那么,这个数就是 因数 ,它的积就是倍数。
③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集 . 注意:不能把一个
数单独叫做倍数,只能说谁是谁的倍数。 : .
百学须先立志。——朱熹
2 2、5、3 的倍数的特征
2 的倍数特征: 整数末尾是 0、2、4、6、8、…… 的数。 3的倍数特征: 整数各个
位数字和是 3 的倍数。例如: 3、6、9、12、15、18…… 、156…… 5 的倍数特征:
整数的末尾是 0 或 5 的数。
3 质数、合数和分解质因数
只有 1 和它本身两个 因数的数,就是 质数(或素数 )。
除了 1 和它本身以外,还有别的因数的数,就是合数。
七 折线统计图
1 折线统计图
2 选择合适的统计图表示数据
: .
百学须先立志。——朱熹
五年级下册
一 认识正负数
*正负数的写法,读法
*正负数的区分; 0 的特性
*生活中的正负数,具有相反意义的量
*数轴
二 分数的意义和性质
1 分数的意义
*分数的意义
把单位 1 平均分成若干份,表示这样的一份或者几份的数叫分数。
把单位“ 1”平均分成若干份,表示其中的一份叫分数单位。
*真分数和假分数
分子比分母小的分数叫真分数。
分子比分母大或者分子和分母相等的分数叫假分数。
由整分数和真分数合成的数通常叫带分数。
2 分数与除法的关系
*联系是:
除法中的被除数相当于分数中的分子
除法中的除数相当于分数中的分母
除法中的除号相当于分数中的分数线
除法中的商相当于分数的分数值
*不同是:除法是一种运算;分数是一个数
3 分数的基本性质
分数的分子和分母同时乘或除以相同的数( 0 除外),分数大小不变,这就是分数的基
本性质。
三 分数加减法(一)
1 公因数和最大公因数
*公因数与最大公因数
相乘的两个数叫因数。
我发现:一个数的因数是有限的,最小的因数是 1,最大的因数是它本身
*求最大公因数的方法:集合法,列举法,短除法。
*特殊的最大公因数 : .
百学须先立志。——朱熹
2 同分母分数加减法
*同分母分数加减法
同分母的分数相加减,分母不变,分子相加减。
*约分和最简分数
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
分子、分母是互质数的分数叫最简分数。
约分的步骤:找出分子和分母的最大公因数;分子和分母同时除以这个公因数
约分的结果:最简分数
4 同分母分数连加、连减、加减混合运算
同分母分数的加减法则;运算顺序;运算律
5 公倍数和最小公倍数
*几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。
*求最小公倍数的方法
5 相关链接:分数与小数的互化
*小数化分数:
一位小数表示十分之几,两位小数表示百分之几… .,写成分数后,能化简的要化简。
*分数化小数 :
分母是 10,100 ,…的分数,直接写成小数;
分母不是 10,100 …的分数,分子除以分母,除不尽的,保留 3 位小数。
带分数化小数的方法
四 方向与位置
1. 数对
人教版五年级数学上下册知识点 来自淘豆网m.daumloan.com转载请标明出处.