下载此文档

2022-2023学年云南省开远市中考适应性考试数学试题含解析.doc


文档分类:中学教育 | 页数:约16页 举报非法文档有奖
1/16
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/16 下载此文档
文档列表 文档介绍
该【2022-2023学年云南省开远市中考适应性考试数学试题含解析 】是由【xinyala】上传分享,文档一共【16】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年云南省开远市中考适应性考试数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.长度单位1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )
A.×10-6米 B.×10-4米
C.×105米 D.×10-5米
2.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为(  )
A.4 B.5 C.6 D.7
3.已知二次函数的图象如图所示,则下列说法正确的是( )
A.<0 B.<0 C.<0 D.<0
4.估计+1的值在(  )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
5.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>:(单位:千克)
甲种糖果
乙种糖果
混合糖果
方案1
2
3
5
方案2
3
2
5
方案3


5
则最省钱的方案为( )
A.方案1 B.方案2
C.方案3 D.三个方案费用相同
6.关于反比例函数y=,下列说法中错误的是(  )
A.它的图象是双曲线
B.它的图象在第一、三象限
C.y的值随x的值增大而减小
D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
7.等式成立的x的取值范围在数轴上可表示为(  )
A. B. C. D.
8.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )
A.10cm B.20cm C.10πcm D.20πcm
9.计算:得(  )
A.- B.- C.- D.
10.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
A. B.3 C.1 D.
11.如果零上2℃记作+2℃,那么零下3℃记作( )
A.-3℃ B.-2℃ C.+3℃ D.+2℃
12.计算3–(–9)的结果是( )
A.12 B.–12 C.6 D.–6
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.
14.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_____________.
15.已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为______.
16.关于的方程有增根,则______.
17.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________
18.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某经销商从市场得知如下信息:
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
20.(6分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
21.(6分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:
(1)该公司有哪几种生产方案?
(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?
(3)在(2)的情况下,%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)
22.(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).
(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;
(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;
(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
23.(8分):方程有两个不相等的实数根;如果方程的两实根为,,且,求m的值.
24.(10分)计算:+(﹣ )﹣1+|1﹣|﹣4sin45°.
25.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
26.(12分)化简求值:,其中.
27.(12分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
先将25 ×104,再和10-9相乘,×10-5米.
故选D
2、B
【解析】
试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得DC′===1.故选B.
3、B
【解析】
根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.
【详解】
解:∵抛物线开口向上,
∴a>0,
∵抛物线交于y轴的正半轴,
∴c>0,
∴ac>0,A错误;
∵->0,a>0,
∴b<0,∴B正确;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,C错误;
当x=1时,y>0,
∴a+b+c>0,D错误;
故选B.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
4、B
【解析】
分析:直接利用2<<3,进而得出答案.
详解:∵2<<3,
∴3<+1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
5、A
【解析】
求出三种方案混合糖果的单价,比较后即可得出结论.
【详解】
方案1混合糖果的单价为,
方案2混合糖果的单价为,
方案3混合糖果的单价为.
∵a>b,
∴,
∴方案1最省钱.
故选:A.
【点睛】
本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.
6、C
【解析】
根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
【详解】
A.反比例函数的图像是双曲线,正确;
B.k=2>0,图象位于一、三象限,正确;
C.在每一象限内,y的值随x的增大而减小,错误;
D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
故选C.
【点睛】
本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
7、B
【解析】
根据二次根式有意义的条件即可求出的范围.
【详解】
由题意可知: ,
解得:,
故选:.
【点睛】
考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
8、A
【解析】
试题解析:扇形的弧长为:=20πcm,
∴圆锥底面半径为20π÷2π=10cm,
故选A.
考点:圆锥的计算.
9、B
【解析】
同级运算从左向右依次计算,计算过程中注意正负符号的变化.
【详解】
-
故选B.
【点睛】
本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
10、A
【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
【详解】
∵AB=3,AD=4,∴DC=3
∴根据勾股定理得AC=5
根据折叠可得:△DEC≌△D′EC,
∴D′C=DC=3,DE=D′E
设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
解得:x=
故选A.
11、A
【解析】
一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
故选A.
12、A
【解析】
根据有理数的减法,即可解答.
【详解】

故选A.
【点睛】
本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
反数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、±1.
【解析】
根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.
【详解】
解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,
∴△=(1a)1-4×1×(-b1+1)=0,
即a1+b1=1,
∵常数a与b互为倒数,
∴ab=1,
∴(a+b)1=a1+b1+1ab=1+3×1=4,
∴a+b=±1,
故答案为±1.
【点睛】
本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.
14、
【解析】
分析:
根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.
详解:
设他推车步行的时间为x分钟,根据题意可得:
80x+250(15-x)=2900.
故答案为80x+250(15-x)=2900.
点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.
15、﹣1.
【解析】
根据反比例函数图象上点的坐标特征得到 再把它们相乘,然后把代入计算即可.
【详解】
根据题意得
所以
故答案为:−1.
【点睛】
考查反比例函数图象上点的坐标特征,把点的坐标代入反比例函数解析式得到是解题的关键.
16、-1
【解析】
根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.
故答案为-1.
点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.
17、1
【解析】
设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.
【详解】
设这个正多边的外角为x°,由题意得:
x+5x=180,
解得:x=30,
360°÷30°=1.
故答案为:1.
【点睛】

2022-2023学年云南省开远市中考适应性考试数学试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数16
  • 收藏数0 收藏
  • 顶次数0
  • 上传人xinyala
  • 文件大小463 KB
  • 时间2025-01-22
最近更新