下载此文档

2022-2023学年山东省临沂市经济技术开发区九年级数学第一学期期末复习检测试题含解析.doc


文档分类:中学教育 | 页数:约22页 举报非法文档有奖
1/22
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/22 下载此文档
文档列表 文档介绍
该【2022-2023学年山东省临沂市经济技术开发区九年级数学第一学期期末复习检测试题含解析 】是由【jimilu】上传分享,文档一共【22】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年山东省临沂市经济技术开发区九年级数学第一学期期末复习检测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是( )
A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°
2.已知二次函数,下列说法正确的是( )
A.该函数的图象的开口向下 B.该函数图象的顶点坐标是
C.当时,随的增大而增大 D.该函数的图象与轴有两个不同的交点
3.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=(  )
A.141° B.144° C.147° D.150°
4.一件商品的原价是100元,经过两次降价后价格为81元,设每次降价的百分比都是x,根据题意,下面列出的方程正确的是( )
A. B. C. D.
5.下面是“育”“才”“水”“井"四个字的甲骨文,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
6.如图,P(x,y)是反比例函数的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的逐渐增大,矩形OAPB的面积( )
A.保持不变 B.逐渐增大 C.逐渐减小 D.无法确定
7.将抛物线向右平移个单位后,得到的抛物线的解析式是( )
A. B. C. D.
8.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BAD为(  )
A.40° B.50° C.60° D.70°
9.朗读者是中央电视台推出的大型文化情感类节目,节目旨在实现文化感染人、鼓舞人、教育人的引导作用为此,某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:
平均数
中位数
众数
方差
对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是  
A.平均数 B.中位数 C.众数 D.方差
10.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了行或列,则列方程得(  )
A.(8﹣) (10﹣)=8×10﹣40 B.(8﹣)(10﹣)=8×10+40
C.(8+)(10+)=8×10﹣40 D.(8+)(10+)=8×10+40
11.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8
个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球(    )
A.32个 B.36个 C.40个 D.42个
12.若将抛物线向右平移2个单位后,所得抛物线的表达式为y=2x2,则原来抛物线的表达式为(  )
A.y=2x2+2 B.y=2x2﹣2 C.y=2(x+2)2 D.y=2(x﹣2)2
二、填空题(每题4分,共24分)
13.已知反比例函数的图象与经过原点的直线相交于点两点,若点的坐标为,则点的坐标为__________.
14.中载:“今有户高多于广六尺八寸,、广各几何?”译文为:,门的对角线长为10尺,那么门的高和宽各是多少尺?设长方形门的宽为尺,则可列方程为___________.
15.如图,圆形纸片⊙O半径为 5,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.
16.如图,一辆小车沿着坡度为的斜坡从点A向上行驶了50米到点B处,则此时该小车离水平面的垂直高度为_____________.
17.抛物线开口向下,且经过原点,则________.
18.如图,二次函数的图象与轴交于点,与轴的一个交点为,点在抛物线上,且与点关于抛物线的对称轴对称.已知一次函数的图象经过两点,根据图象,则满足不等式的的取值范围是_____________
三、解答题(共78分)
19.(8分)如图,已知O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).
(1)以O点为位似中心,在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)如果△OBC内部一点M的坐标为(x,y),写出B,C,M的对应点B′,C′,M′的坐标.
20.(8分)如图1,是内任意一点,连接,分别以为边作(在的左侧)和(在的右侧),使得,,连接.
(1)求证:;
(2)如图2,交于点,若,点共线,其他条件不变,
①判断四边形的形状,并说明理由;
②当,,且四边形是正方形时,直接写出的长.
21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O 的半径.
22.(10分)已知关于x的一元二次方程x1 = 1(1-m)x-m1 有两个实数根为x1,x1.
(1)求m的取值范围;
(1)设y = x1 + x1,求当m为何值时,y有最小值.
23.(10分)在平面直角坐标系中,抛物线经过点,.
(1)求这条抛物线所对应的函数表达式.
(2)求随的增大而减小时的取值范围.
24.(10分)从三角形(不是等腰三角形)一个顶点引出一条射线 与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
如图1,在中,是的完美分割线,且, 则的度数是
如图2,在中,为角平分线,,求证: 为的完美分割线.
如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.
25.(12分)如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.
(1)求二次函数的解析式;
(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;
(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.
26.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是   ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   .
参考答案
一、选择题(每题4分,共48分)
1、B
【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解.
【详解】解:∵直径AB⊥弦CD
∴CE=DE
故选B.
【点睛】
本题考查垂径定理,本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成.
2、D
【分析】根据二次函数的性质解题.
【详解】解:A、由于y=x2-4x-3中的a=1>0,所以该抛物线的开口方向是向上,故本选项不符合题意.
B、由y=x2-4x-3=(x-2)2-7知,该函数图象的顶点坐标是(2,-7),故本选项不符合题意.
C、由y=x2-4x-3=(x-2)2-7知,该抛物线的对称轴是x=2且抛物线开口方向向上,所以当x>2时,y随x的增大而增大,故本选项不符合题意.
D、由y=x2-4x-3知,△=(-4)2-4×1×(-3)=28>0,则该抛物线与x轴有两个不同的交点,故本选项符合题意.
故选:D.
【点睛】
考查了抛物线与x轴的交点,二次函数的性质,需要利用二次函数图象与系数的关系,二次函数图象与x轴交点的求法,配方法的应用等解答,难度不大.
3、B
【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
【详解】(6﹣2)×180°÷6=120°,
(5﹣2)×180°÷5=108°,
∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
=720°﹣360°﹣216°
=144°,
故选B.
【点睛】
本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
4、B
【分析】原价为100,第一次降价后的价格是100×(1-x),第二次降价是在第一次降价后的价格的基础上降价的,第二次降价后的价格为:100×(1-x)×(1-x)=100(1-x)2,则可列出方程.
【详解】设平均每次降价的百分比为x,根据题意可得:
100(1-x)2=81
故选:B.
【点睛】
本题主要考查了一元二次方程的增长率问题,需注意第二次降价是在第一次降价后的价格的基础上降价的.
5、C
【解析】根据中心对称图形与轴对称图形的区别判断即可,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,
关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.
【详解】解:,不符合题意;
,不符合题意;
,符合题意;
,不符合题意;
故答案为:C.
【点睛】
本题考查的知识点是轴对称图形与中心对称图形的判断,熟记二者的区别是解题的关键.
6、A
【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以随着x的逐渐增大,矩形OAPB的面积将不变.
【详解】解:依题意有矩形OAPB的面积=2×|k|=3,所以随着x的逐渐增大,矩形OAPB的面积将不变.
故选:A.
【点睛】
本题考查了反比例函数 y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.
7、B
【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向右平移3个单位长度得点(0,3),然后根据顶点式写出平移后的抛物线解析式.
【详解】解:将抛物线向右平移个单位后,得到的抛物线的解析式.
故选:B
【点睛】
,也可以移动顶点坐标,根据平移后的顶点坐标代入顶点式,即可求解.
8、B
【分析】连接BD,根据直径所对的圆周角是直角可得∠ADB的度数,然后在根据同弧所对的圆周角相等即可解决问题.
【详解】解:如图,连接BD.
∵AB是直径,
∴∠ADB=90°,
∵∠B=∠C=40°,
∴∠DAB=90°﹣40°=50°,
故选:B.
【点睛】
本题考查的是直径所对的圆周角是直角与同弧所对的圆周角相等的知识,能够连接BD是解题的关键.
9、B
【分析】根据方差、平均数、众数和中位数的定义进行判断.
【详解】解:对9位评委所给的分数,去掉一个最高分和一个最低分后,中位数一定不发生变化.
故选B.
【点睛】
本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了平均数、众数和中位数.
10、D
【解析】增加了行或列,现在是行,列,所以(8+)(10+)=8×10+40.
11、A
【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”
【详解】设盒子里有白球x个,
根据 得:

解得:x=1.
经检验得x=1是方程的解.
答:盒中大约有白球1个.
故选;A.
【点睛】
此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.
12、C
【解析】分析:根据平移的规律,把已知抛物线的解析式向左平移即可得到原来抛物线的表达式.
详解:
∵将抛物线向右平移1个单位后,所得抛物线的表达式为y=1x1,∴原抛物线可看成由抛物线y=1x1向左平移1个单位可得到原抛物线的表达式,∴原抛物线的表达式为y=1(x+1)1.
故选C.
点睛:本题主要考查了二次函数的图象与几何变换,掌握函数图象的平移规律是解题的关键,即“左加右减,上加下减”.
二、填空题(每题4分,共24分)
13、(﹣1,﹣2)
【分析】已知反比例函数的图像和经过原点的一次函数的图像都经过点(1,2),利用待定系数法先求出这两个函数的解析式,然后将两个函数的关系式联立求解即可.
【详解】解:设过原点的直线L的解析式为,由题意得:

∴把代入函数和函数中,得:
∴求得另一解为
∴点B的坐标为(-1,-1)
故答案为(-1,-1).
【点睛】
本题考查的是用待定系数法求一次函数和反比例函数的解析式,解题的关键是找到函数图像上对应的点的坐标,构建方程或方程组进行解题.
14、

2022-2023学年山东省临沂市经济技术开发区九年级数学第一学期期末复习检测试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数22
  • 收藏数0 收藏
  • 顶次数0
  • 上传人jimilu
  • 文件大小1.23 MB
  • 时间2025-01-22