下载此文档

2022-2023学年江苏省宝应县山阳中学数学九年级第一学期期末统考试题含解析.doc


文档分类:中学教育 | 页数:约22页 举报非法文档有奖
1/22
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/22 下载此文档
文档列表 文档介绍
该【2022-2023学年江苏省宝应县山阳中学数学九年级第一学期期末统考试题含解析 】是由【286919636】上传分享,文档一共【22】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年江苏省宝应县山阳中学数学九年级第一学期期末统考试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.下列式子中,为最简二次根式的是( )
A. B. C. D.
2.如图所示,∆ABC的顶点在正方形网格的格点上,则cosB=( )
A. B. C. D.
3.如图,已知一次函数 y=kx-2 的图象与 x 轴、y 轴分别交于 A,B 两点,与反比例函数的图象交于点 C,且 AB=AC,则 k 的值为( )
A.1 B.2 C.3 D.4
4.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A.(,0) B.(1,0) C.(,0) D.(,0)
5.一元二次方程x(3x+2)=6(3x+2)的解是(  )
A.x=6 B.x=﹣ C.x1=6,x2=﹣ D.x1=﹣6,x2=
6.下列方程中,是一元二次方程的是(  )
A. B.
C. D.
7.如图,A,B,C,D是⊙O上的四个点,弦AC,BD交于点P.若∠A=∠C=40°,则∠BPC的度数为( )
A.100° B.80°
C.50° D.40°
8.若抛物线经过点,则的值在( ).
A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间
9.下列图形,既是轴对称图形又是中心对称图形的是(  )
A.正三角形 B.正五边形 C.等腰直角三角形 D.矩形
10.我们定义一种新函数:形如(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是(  )
①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);
②图象具有对称性,对称轴是直线x=1;
③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;
④当x=﹣1或x=3时,函数的最小值是0;
⑤当x=1时,函数的最大值是4,
A.4 B.3 C.2 D.1
11.设抛物线的顶点为M ,与y轴交于N点,连接直线MN,=1 ( )
A. B.
C. D. (a为任意常数)
12.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tanA=(  )
A. B. C. D.
二、填空题(每题4分,共24分)
13.如果不等式组的解集是x<a﹣4,则a的取值范围是_______.
14.如图,四边形中,,连接,,点为中点,连接,,,则__________.
15.若,则=___________.
16.某居民小区为了解小区500户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:只):65,70,85,74,86,78,74,92,82,1.
根据统计情况,估计该小区这500户家庭每月一共使用塑料袋_________只.
17.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.
18.如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为___________.
三、解答题(共78分)
19.(8分)如图,在一笔直的海岸线上有A,B两观景台,A在B的正东方向,BP=5(单位:km),有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.
(1)求A、B两观景台之间的距离;
(2)小船从点P处沿射线AP的方向进行沿途考察,求观景台B到射线AP的最短距离.(结果保留根号)
20.(8分)小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.
(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.
(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?( )
21.(8分)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:
(1)两辆车中恰有一辆车向左转;
(2)两辆车行驶方向相同.
22.(10分)如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.
(1)求证:BC是半圆O的切线;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.
23.(10分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.
24.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球1个,若从中随机摸出一个球,这个球是白球的概率为
(1)求袋子中白球的个数
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到白球的概率.
25.(12分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.
(1)求二次函数y=ax2+2x+c的表达式;
(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C,若四边形POP′C为菱形,请求出此时点P的坐标;
(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
26.近日,国产航母山东舰成为了新晋网红,作为我国本世纪建造的第一艘真正意义上的国产航母,承载了我们太多期盼,促使我国在伟大复兴路上加速前行如图,山东舰在一次测试中,巡航到海岛A北偏东60°方向P处,发现在海岛A正东方向有一可疑船只B正沿BA方向行驶。山东舰经测量得出:可疑船只在P处南偏东45°方向,距P处海里。山东舰立即从P沿南偏西30°方向驶出,刚好在C处成功拦截可疑船只。求被拦截时,可疑船只距海岛A还有多少海里?(,)
参考答案
一、选择题(每题4分,共48分)
1、B
【分析】利用最简二次根式定义判断即可.
【详解】A、原式,不符合题意;
B、是最简二次根式,符合题意;
C、原式,不符合题意;
D、原式,不符合题意;
故选B.
【点睛】
此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.
2、C
【分析】先设小正方形的边长为1,再建构直角三角形,然后根据锐角三角函数的定义求解即可;
【详解】解:如图,过A作AD⊥CB于D,
设小正方形的边长为1,
则BD=AD=3,AB=
∴cos∠B=;
故选C.
【点睛】
本题主要考查了锐角三角函数的定义,勾股定理,掌握锐角三角函数的定义,勾股定理是解题的关键.
3、B
【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=,从而表达出点C的坐标,代入反比例函数解析式即可解答.
【详解】解:如图所示,作CD⊥x轴于点D,
∴∠CDA=∠BOA=90°,
∵∠BAO=∠CAD,AB=AC,
∴△BAO≌△CAD(AAS),
∴BO=CD,
对于一次函数 y=kx-2,
当x=0时,y=-2,当y=0时,x=,
∴BO=CD=2,OA=AD=,
∴OD=
∴点C(,2),
∵点C在反比例函数的图象上,
∴,解得k=2,
故选:B.
【点睛】
本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C点的坐标是解题的关键.
4、D
【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.
【详解】∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,
∴A(,2),B(2,),
∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,
∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,
即此时线段AP与线段BP之差达到最大,
设直线AB的解析式是y=kx+b,
把A、B的坐标代入得:

解得:k=-1,b=,
∴直线AB的解析式是y=-x+,
当y=0时,x=,
即P(,0),
故选D.
【点睛】
本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.
5、C
【分析】根据因式分解法解一元二次方程即可求出答案.
【详解】解:∵x(3x+2)=6(3x+2),
∴(x﹣6)(3x+2)=0,
∴x=6或x=,
故选:C.
【点睛】
本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.
6、B
【解析】根据一元二次方程的定义进行判断即可.
【详解】,错误;
,正确;
,但不属于整式方程,错误;
,未知数项的最高次数是3,错误.
故答案为:B.
【点睛】
本题考查了一元二次方程的性质以及定义,掌握一元二次方程的定义是解题的关键.
7、B
【分析】根据同一个圆中,同弧所对的圆周角相等,可知,结合题意求的度数,再根据三角形的一个外角等于其不相邻两个内角和解题即可.
【详解】
故选B
【点睛】
本题考查圆的综合,其中涉及圆周角定理、三角形外角性质,是常见考点,熟练掌握相关知识是解题关键.
8、D
【分析】将点A代入抛物线表达式中,得到,根据进行判断.
【详解】∵抛物线经过点,
∴,
∵,
∴的值在3和4之间,
故选D.
【点睛】
本题考查抛物线的表达式,无理数的估计,熟知是解题的关键.
9、D
【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.
【详解】A.正三角形是轴对称图形,不是中心对称图形;
B.正五边形是轴对称图形,不是中心对称图形;
C.等腰直角三角形是轴对称图形,不是中心对称图形;
D.矩形是轴对称图形,也是中心对称图形,
故选D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转

2022-2023学年江苏省宝应县山阳中学数学九年级第一学期期末统考试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数22
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小970 KB
  • 时间2025-01-23
最近更新