下载此文档

2022-2023学年湖南省株洲荷塘区四校联考数学九上期末质量跟踪监视模拟试题含解析.doc


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
该【2022-2023学年湖南省株洲荷塘区四校联考数学九上期末质量跟踪监视模拟试题含解析 】是由【286919636】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年湖南省株洲荷塘区四校联考数学九上期末质量跟踪监视模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.化简的结果是(  )
A. B. C. D.
2.如图①,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为( ).
A.3 B.4 C.5 D.6
3.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 (    )
A. B. C. D.
4.下列图形中不是中心对称图形的是(  )
A. B. C. D.
5.如果2是方程x2-3x+k=0的一个根,则常数k的值为(   )
A.2 B.1 C.-1 D.-2
6.点P(3,5)关于原点对称的点的坐标是(  )
A.(﹣3,5) B.(3,﹣5) C.(5,3) D.(﹣3,﹣5)
7.如图,一边靠墙(墙有足够长),其它三边用12 m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是( )
A.16 m2 B.12 m2 C.18 m2 D.以上都不对
8.如图,双曲线的一个分支为( )
A.① B.② C.③ D.④
9.抛物线y=x2+2x+3的对称轴是( )
A.直线x=1 B.直线x=-1
C.直线x=-2 D.直线x=2
10.如图下列条件中不能判定的是( )
A. B.
C. D.
二、填空题(每小题3分,共24分)
11.如图,,如果,,,那么___________.
12.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2.
以上结论中,你认为正确的有 .(填序号)
13.如图1,点M,N,P,Q分别在矩形ABCD的边AB,BC,CD,DA上,我们称四边形MNPQ是矩形ABCD的内接四边形.已知矩形ABCD,AB=2BC=6,若它的内接四边形MNPQ也是矩形,且相邻两边的比为3:1,则AM=_____.
14.如图,点A,B是双曲线上的点,分别过点A,B作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.
15.在平面直角坐标系中,抛物线y=x2如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,过点A4作A4A5∥x轴交抛物线于点A5,则点A5的坐标为_____.
16.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1= .
17.如图,已知点A的坐标为(4,0),点B的坐标为(0,3),在第一象限内找一点P(a,b) ,使△PAB为等边三角形,则2(a-b)=___________.
18.如图,为矩形对角线,的交点,AB=6,M,N是直线BC上的动点,且,则的最小值是_.
三、解答题(共66分)
19.(10分)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.
20.(6分)一个斜抛物体的水平运动距离为x(m),对应的高度记为h(m),且满足h=ax1+bx﹣1a(其中a≠0).已知当x=0时,h=1;当x=10时,h=1.
(1)求h关于x的函数表达式;
(1)求斜抛物体的最大高度和达到最大高度时的水平距离.
21.(6分)解方程:x2-7x-18=0.
22.(8分)计算:
23.(8分) “五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.
(1)该顾客至多可得到________元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.
24.(8分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)C类女生有   名,D类男生有   名,将上面条形统计图补充完整;
(2)扇形统计图中“课前预习不达标”对应的圆心角度数是   ;
(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,
25.(10分)解不等式组:
26.(10分)化简:.
参考答案
一、选择题(每小题3分,共30分)
1、D
【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.
【详解】原式=×=×(+1)=2+.
故选D.
【点睛】
本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.
2、B
【分析】当点在上运动时,面积逐渐增大,当点到达点时,结合图象可得面积最大为1,得到与的积为12;当点在上运动时,面积逐渐减小,当点到达点时,面积为0,此时结合图象可知点运动路径长为7,得到与的和为7,构造关于的一元二方程可求解.
【详解】解:当点在上运动时,面积逐渐增大,当点到达点时,面积最大为1.
∴,即.
当点在上运动时,面积逐渐减小,当点到达点时,面积为0,此时结合图象可知点运动路径长为7,
∴.
则,代入,得,解得或1,
因为,即,
所以.
故选B.
【点睛】
本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.
3、A
【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,
故选A.
4、B
【分析】在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
【详解】A、C、D都是中心对称图形;不是中心对称图形的只有B.
故选B.
【点睛】
本题属于基础应用题,只需学生熟知中心对称图形的定义,即可完成.
5、A
【分析】把x=1代入已知方程列出关于k的新方程,通过解方程来求k的值.
【详解】解:∵1是一元二次方程x1-3x+k=0的一个根,
∴11-3×1+k=0,
解得,k=1.
故选:A.
【点睛】
本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
6、D
【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.
【详解】解:点P(3,5)关于原点对称的点的坐标是(-3,-5),
故选D.
【点睛】
本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.
7、C
【分析】设AB边为x,则BC边为(12-2x),根据矩形的面积可列二次函数,再求出最大值即可.
【详解】设AB边为x,则BC边为(12-2x),
则矩形ABCD的面积y=x(12-2x)=-2(x-3)2+18,
∴当x=3时,面积最大为18,
选C.
【点睛】
此题主要考察二次函数的应用,正确列出函数是解题的关键.
8、D
【解析】∵在中,k=8>0,
∴它的两个分支分别位于第一、三象限,排除①②;
又当=2时,=4,排除③;
所以应该是④.
故选D.
9、B
【分析】根据抛物线的对称轴公式:计算即可.
【详解】解:抛物线y=x2+2x+3的对称轴是直线
故选B.
【点睛】
此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.
10、C
【分析】根据相似三角形的判定定理对各个选项逐一分析即可.
【详解】A. ,可以判定,不符合题意;
B. ,可以判定,不符合题意;
C. 不是对应边成比例,且不是相应的夹角,不能判定,符合题意;
D. 即且,可以判定,不符合题意.
故选C.
【点睛】
本题考查了相似三角形的判定定理,熟练掌握判定定理是解题的关键.
二、填空题(每小题3分,共24分)
11、1
【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到,然后把数值代入求出DF.
【详解】解:∵l1∥l2∥l3,


即 ,
∴DE=1.
故答案为:1
【点睛】
本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
12、①③④
【解析】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,
∴FH∥CG,EH∥CF,
∴四边形CFHE是平行四边形,
由翻折的性质得,CF=FH,
∴四边形CFHE是菱形,(故①正确);
∴∠BCH=∠ECH,
∴只有∠DCE=30°时EC平分∠DCH,(故②错误);
点H与点A重合时,设BF=x,则AF=FC=8﹣x,
在Rt△ABF中,AB2+BF2=AF2,
即42+x2=(8﹣x)2,
解得x=3,
点G与点D重合时,CF=CD=4,
∴BF=4,
∴线段BF的取值范围为3≤BF≤4,(故③正确);
过点F作FM⊥AD于M,
则ME=(8﹣3)﹣3=2,
由勾股定理得,
EF==2,(故④正确);
综上所述,结论正确的有①③④共3个,
故答案为①③④.
考点:翻折变换的性质、菱形的判定与性质、勾股定理
13、
【分析】证明△AMQ∽△DQP,△PCN∽△NBM,设MA=x,则DQ=3x,QA=3﹣3x,DP=9﹣9x,PC=9x﹣3,NB=27x﹣9,表示出NC,由BC长为3,可得方程,解方程即可得解.
【详解】解:∵四边形ABCD和四边形MNPQ为矩形,
∴∠D=∠A=90°,∠DQP=∠QMA,
∴△AMQ∽△DQP,
同理△PCM∽△NBM,
设MA=x,∵PQ:QM=3:1,
∴DQ=3x,QA=3﹣3x,DP=9﹣9x,
PC=6﹣(9﹣9x)=9x﹣3,NB=3PC=27x﹣9,
BM=6﹣x,
∴NC=,
∴=3,
解得x=.
即AM=.
故答案为:.
【点睛】
本题考查矩形的性质,相似三角形的判定与性质,关键是熟练掌握相似三角形的判定与性质及方程的思想方法.
14、1.
【解析】试题分析:∵点A、B是双曲线上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=1,故答案为1.

2022-2023学年湖南省株洲荷塘区四校联考数学九上期末质量跟踪监视模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小750 KB
  • 时间2025-01-23