下载此文档

2022-2023学年湖南省邵阳市隆回县重点中学中考冲刺卷数学试题含解析.doc


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
该【2022-2023学年湖南省邵阳市隆回县重点中学中考冲刺卷数学试题含解析 】是由【286919636】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年湖南省邵阳市隆回县重点中学中考冲刺卷数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是(  )
A. B. C. D.
2.如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )
A. B.
C. D.
3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得(  )
A.168(1﹣x)2=108 B.168(1﹣x2)=108
C.168(1﹣2x)=108 D.168(1+x)2=108
4.=(  )
A.±4 B.4 C.±2 D.2
5.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为(  )
A. cm B.cm C.cm D. cm
6.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )
A. B. C. D.
7.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )
A.3:1 B.4:1 C.5:2 D.7:2
8.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为(  )
A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm2
9.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为(  )
A.30° B.45° C.60° D.75°
10.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是(  )
A.3 B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知是二元一次方程组的解,则m+3n的立方根为__.
12.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是 ▲ .
13.两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为__________.
14.计算的结果为_____.
15.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.
16.若反比例函数的图象与一次函数y=ax+b的图象交于点A(﹣2,m)、B(5,n),则3a+b的值等于_____.
三、解答题(共8题,共72分)
17.(8分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)根据图象写出不等式kx+b﹣≤0的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
18.(8分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:
(1)甲选择座位W的概率是多少;
(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.
19.(8分)已知:如图,∠ABC,射线BC上一点D.
求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.
20.(8分)发现
如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣  )×180°.
21.(8分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:
问题1:单价
该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?
问题2:投放方式
该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.
22.(10分)先化简,再求值:,其中.
23.(12分)反比例函数的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.
24.计算:﹣22﹣+|1﹣4sin60°|
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.
【详解】
如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,.
【点睛】
本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.
2、B
【解析】
根据图示,可得:b<0<a,|b|>|a|,据此判断即可.
【详解】
∵b<0<a,|b|>|a|,
∴a+b<0,
∴|a+b|= -a-b.
故选B.
【点睛】
此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.
3、A
【解析】
设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.
【详解】
设每次降价的百分率为x,
根据题意得:168(1-x)2=1.
故选A.
【点睛】
此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.
4、B
【解析】
表示16的算术平方根,为正数,再根据二次根式的性质化简.
【详解】
解:,
故选B.
【点睛】
本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.
5、B
【解析】
试题解析:∵菱形ABCD的对角线

根据勾股定理,
设菱形的高为h,
则菱形的面积

解得
即菱形的高为cm.
故选B.
6、A
【解析】
过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
【详解】
过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
故选A.
【点睛】
本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.
7、A
【解析】
利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.
【详解】
连接DO,交AB于点F,
∵D是的中点,
∴DO⊥AB,AF=BF,
∵AB=8,
∴AF=BF=4,
∴FO是△ABC的中位线,AC∥DO,
∵BC为直径,AB=8,AC=6,
∴BC=10,FO=AC=1,
∴DO=5,
∴DF=5-1=2,
∵AC∥DO,
∴△DEF∽△CEA,
∴,
∴==1.
故选:A.
【点睛】
此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.
8、B
【解析】
试题分析:底面积是:9πcm1,
底面周长是6πcm,则侧面积是:×6π×5=15πcm1.
则这个圆锥的全面积为:9π+15π=14πcm1.
故选B.
考点:圆锥的计算.
9、A
【解析】
解:∵四边形ABCO是平行四边形,且OA=OC,
∴四边形ABCO是菱形,
∴AB=OA=OB,
∴△OAB是等边三角形,
∴∠AOB=60°,
∵BD是⊙O的直径,
∴点B、D、O在同一直线上,
∴∠ADB=∠AOB=30°
故选A.
10、A
【解析】
根据锐角三角函数的性质,可知cosA==,然后根据AC=2,解方程可求得AB=3.
故选A.
点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3
【解析】
把x与y的值代入方程组求出m与n的值,即可确定出所求.
【详解】
解:把代入方程组得:
相加得:m+3n=27,
则27的立方根为3,
故答案为3
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
12、-2<x<-1或x>1.
【解析】
不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.
不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.
而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.
由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.
∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.
∴不等式k1x<+b的解集是-2<x<-1或x>1.
13、
【解析】
依据∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,进而得到△BFG∽△CHF,依据相似三角形的性质,即可得到=,即=,即可得到CH=.
【详解】
解:∵AG=1,BG=3,
∴AB=4,
∵△ABC是等腰直角三角形,

2022-2023学年湖南省邵阳市隆回县重点中学中考冲刺卷数学试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小618 KB
  • 时间2025-01-23