下载此文档

2022-2023学年黑龙江省哈尔滨市五常市二河乡二河中学中考数学五模试卷含解析.doc


文档分类:中学教育 | 页数:约19页 举报非法文档有奖
1/19
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/19 下载此文档
文档列表 文档介绍
该【2022-2023学年黑龙江省哈尔滨市五常市二河乡二河中学中考数学五模试卷含解析 】是由【1875892****】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年黑龙江省哈尔滨市五常市二河乡二河中学中考数学五模试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )
A. B. C. D.
2.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则ba的值是( )
A.14 B.-14 C.4 D.-1
3.下列说法正确的是( )
A.对角线相等且互相垂直的四边形是菱形
B.对角线互相平分的四边形是正方形
C.对角线互相垂直的四边形是平行四边形
D.对角线相等且互相平分的四边形是矩形
4.下列实数中,为无理数的是(  )
A. B. C.﹣5 D.
5.若二次函数的图像与轴有两个交点,则实数的取值范围是( )
A. B. C. D.
6.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是(  )
A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠0
7.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )
A.平均数 B.标准差 C.中位数 D.众数
8.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )
A.10 B.12 C.20 D.24
9.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是(  )
A. B.
C. D.
10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为(  )
A.6 B.8 C.10 D.12
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.
12.如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:
①;②;③;④不等式的解集是或.
其中正确结论的序号是__________.
13.计算:6﹣=_____
14.函数y=中,自变量x的取值范围是_________.
15.分解因式:2x3﹣4x2+2x=_____.
16.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.
17.已知关于x的方程x2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.
三、解答题(共7小题,满分69分)
18.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
19.(5分)计算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;
20.(8分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的长.
21.(10分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:
收费方式
月使用费/元
包时上网时间/h
超时费/(元/min)
A
7
25

B
m
n

设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.
(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n= ;
(2)写出yA与x之间的函数关系式;
(3)选择哪种方式上网学习合算,为什么.
22.(10分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.
23.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?
24.(14分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
(1)判断△ABC的形状,并证明你的结论;
(2)如图1,若BE=CE=,求⊙A的面积;
(3)如图2,若tan∠CEF=,求cos∠C的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.
【详解】
解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.
【点睛】
本题考查了三视图的概念.
2、A
【解析】
根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.
【详解】
解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,
∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,
解得a=2,b=-12,
∴ba=(-12)2=14.
故选A.
3、D
【解析】
分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.
详解:A、对角线互相平分且垂直的四边形是菱形,故错误;
B、四条边相等的四边形是菱形,故错误;
C、对角线相互平分的四边形是平行四边形,故错误;
D、对角线相等且相互平分的四边形是矩形,正确;
故选D.
点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.
4、B
【解析】
根据无理数的定义解答即可.
【详解】
选项A、是分数,是有理数;
选项B、是无理数;
选项C、﹣5为有理数;
选项D、;
故选B.
【点睛】
本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.
5、D
【解析】
由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.
【详解】
∵抛物线y=x2-2x+m与x轴有两个交点,
∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,
解得:m<1.
故选D.
【点睛】
本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.
6、C
【解析】
根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.
【详解】
解:∵抛物线和轴有交点,
,
解得:且.
故选.
【点睛】
本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.
7、B
【解析】
试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:
设样本A中的数据为xi,则样本B中的数据为yi=xi+2,
则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.
故选B.
考点:统计量的选择.
8、B
【解析】
根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.
【详解】
解:根据图象可知点P在BC上运动时,此时BP不断增大,
由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,
由于M是曲线部分的最低点,
∴此时BP最小,即BP⊥AC,BP=4,
∴由勾股定理可知:PC=3,
由于图象的曲线部分是轴对称图形,
∴PA=3,
∴AC=6,
∴△ABC的面积为:×4×6=12.
故选:B.
【点睛】
本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型.
9、A
【解析】
根据题意,将运动过程分成两段.分段讨论求出解析式即可.
【详解】
∵BD=2,∠B=60°,
∴点D到AB距离为,
当0≤x≤2时,
y=;
当2≤x≤4时,y=.
根据函数解析式,A符合条件.
故选A.
【点睛】
本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
10、B
【解析】
根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.
【详解】
∵点A的坐标为(﹣3,﹣4),
∴OA==5,
∵四边形AOCB是菱形,
∴AB=OA=5,AB∥x轴,
∴B(﹣8,﹣4),
∵点E是菱形AOCB的中心,
∴E(﹣4,﹣2),
∴k=﹣4×(﹣2)=8,
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x ),∠FEG=∠CEG;同理可证AF=AD=5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.
【详解】
连接EG;
∵四边形ABCD为矩形,
∴∠D=∠C=90°,DC=AB=4;
由题意得:EF=DE=EC=2,∠EFG=∠D=90°;
在Rt△EFG与Rt△ECG中,

∴Rt△EFG≌Rt△ECG(HL),
∴FG=CG(设为x ),∠FEG=∠CEG;
同理可证:AF=AD=5,∠FEA=∠DEA,
∴∠AEG=×180°=90°,
而EF⊥AG,可得△EFG∽△AFE,

∴22=5•x,
∴x=,
∴CG=,
故答案为:.
【点睛】
此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.
12、②③④
【解析】
分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.
详解:由图象知,k1<0,k2<0,

2022-2023学年黑龙江省哈尔滨市五常市二河乡二河中学中考数学五模试卷含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数19
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1875892****
  • 文件大小694 KB
  • 时间2025-01-23
最近更新