该【2022-2023学年天津市宁河区数学九年级上册期末质量检测试题含解析 】是由【rongfunian】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年天津市宁河区数学九年级上册期末质量检测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.在△ABC中,AB=AC=13,BC=24,则tanB等于( )
A. B. C. D.
2.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )
A.60° B.90° C.120° D.180°
3.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A.4 B.3 C.2 D.
4.如图,AB是⊙O的直径,弦CD⊥AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为( )
A.π B.4π C.π D.π
5.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是( ).
A.3 B.4 C.6 D.8
6.下列正多边形中,绕其中心旋转72°后,能和自身重合的是( )
A.正方形 B.正五边形
C.正六边形 D.正八边形
7.关于的方程有实数根,则满足( )
A. B.且 C.且 D.
8.二次函数在下列( )范围内,y随着x的增大而增大.
A. B. C. D.
9.下列四幅图案,在设计中用到了中心对称的图形是( )
A. B. C. D.
10.下列函数是二次函数的是( )
A.y=2x﹣3 B.y= C.y=(x﹣1)(x+3) D.
11.如图,在⊙O中,弦BC // OA,AC与OB相交于点M,∠C=20°,则∠MBC的度数为( ).
A.30° B.40°
C.50° D.60°
12.已知(x2+y2)(x2+y2-1)-6=0,则 x2+y2 的值是( )
A.3或-2 B.-3或2 C.3 D.-2
二、填空题(每题4分,共24分)
13.若2是方程x2﹣2kx+3=0的一个根,则方程的另一根为______.
14.若=,则的值为________.
15.已知,若是一元二次方程的两个实数根,则的值是___________.
16.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______().
投篮次数(n)
50
100
150
200
250
300
500
投中次数(m)
28
60
78
104
123
152
251
投中频率(m/n)
17.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影部分=m,则S1+S2=_____.
18.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.
三、解答题(共78分)
19.(8分)把下列多项式分解因式:
(1).
(2).
20.(8分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
21.(8分)如图,,分别是,上的点,,于,于.若,,求:
(1);
(2)与的面积比.
22.(10分)如图,在中,,,垂足为,且交的延长线于点.
(1)求证:是的切线;
(2)若,,求的长.
23.(10分)如图,抛物线经过点,点,交轴于点,连接,.
(1)求抛物线的解析式;
(2)点为抛物线第二象限上一点,满足,求点的坐标;
(3)将直线绕点顺时针旋转,与抛物线交于另一点,求点的坐标.
24.(10分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.
(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?
(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.
25.(12分)如图,在△ABC中,sinB=,cosC=,AB=5,求△ABC的面积.
26.为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.
(1)学生小红计划选修两门课程,请写出所有可能的选法;
(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
参考答案
一、选择题(每题4分,共48分)
1、B
【解析】如图,等腰△ABC中,AB=AC=13,BC=24,
过A作AD⊥BC于D,则BD=12,
在Rt△ABD中,AB=13,BD=12,则,
AD=,
故tanB=.
故选B.
【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.
2、C
【详解】解:设母线长为R,底面半径为r,可得底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,
根据圆锥侧面积恰好等于底面积的3倍可得3πr2=πrR,即R=3r.
根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,
即.
可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.
故选C.
考点:有关扇形和圆锥的相关计算
3、B
【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.
【详解】把x=1代入得:y=1,
∴A(1,1),把x=2代入得:y=,
∴B(2, ),
∵AC//BD// y轴,
∴C(1,k),D(2,)
∴AC=k-1,BD=-,
∴S△OAC=(k-1)×1,
S△ABD= (-)×1,
又∵△OAC与△ABD的面积之和为,
∴(k-1)×1+ (-)×1=,解得:k=3;
故答案为B.
【点睛】
:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.
4、D
【分析】根据圆周角定理求出∠COB,进而求出∠AOC,再利用垂径定理以及锐角三角函数关系得出OC的长,再结合扇形面积求出答案.
【详解】解:∵,
∴,
∴,
∵,,
∴,,
∴,
∴阴影部分的面积为,
故选:D.
【点睛】
本题考查了圆周角定理,垂径定理,解直角三角形,扇形面积公式等知识点,能求出线段OC的长和∠AOC的度数是解此题的关键.
5、B
【分析】根据白、黄球共有的个数乘以白球的概率即可解答.
【详解】由题意得:12×=4,即白球的个数是4.
故选:B.
【点睛】
本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
6、B
【解析】选项A,正方形的最小旋转角度为90°,绕其中心旋转90°后,能和自身重合;
选项B,正五边形的最小旋转角度为 72°,绕其中心旋转72°后,能和自身重合;
选项C,正六边形的最小旋转角度为60°,绕其中心旋转60°后,能和自身重合;
选项D,正八边形的最小旋转角度为45°,绕其中心旋转45°后,能和自身重合.
故选B.
7、A
【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.
【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;
当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
所以a的取值范围为a≥1.
故选A.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
8、C
【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.
【详解】,
∵图像的对称轴为x=1,a=-1,
∴当x时,y随着x的增大而增大,
故选:C.
【点睛】
此题考查二次函数的性质,当a时,对称轴左减右增.
9、D
【解析】由题意根据中心对称图形的性质即图形旋转180°与原图形能够完全重合的图形是中心对称图形,依次对选项进行判断即可.
【详解】解:A.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;
B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;
C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;
D.旋转180°,能与原图形能够完全重合是中心对称图形;故此选项正确;
故选:D.
【点睛】
本题主要考查中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.
10、C
【分析】根据二次函数的定义作出判断.
【详解】解:A、该函数属于一次函数,故本选项错误;
B、该函数未知数在分母位置,不符合二次函数的定义,故本选项错误;
C、该函数符合二次函数的定义,故本选项正确;
D、该函数只有一个变量不符合二次函数的定义,故本选项错误;
故选:C.
【点睛】
此题考查的是二次函数的判断,掌握二次函数的定义是解决此题的关键.
11、B
【分析】由圆周角定理(同弧所对的圆周角是圆心角的一半)得到∠AOB,再由平行得∠MBC.
【详解】解:∵∠C=20°
∴∠AOB=40°
又∵弦BC∥半径OA
∴∠MBC=∠AOB =40°,
故选:B.
【点睛】
熟练掌握圆周角定理,平行线的性质是解答此题的关键.
12、C
【分析】设m=x2+y2,则有,求出m的值,结合x2+y20,即可得到答案.
【详解】解:根据题意,设m=x2+y2,
∴原方程可化为:,
∴,
解得:或;
∵,
∴,
∴;
故选:C.
【点睛】
本题考查了换元法求一元二次方程,解题的关键是熟练掌握解一元二次方程的方法和步骤.
二、填空题(每题4分,共24分)
13、.
【解析】根据一元二次方程根与系数的关系即可得出答案.
【详解】解:设方程的另一根为x1,
又∵x2=2,
∴2x1=3,
解得x1=,
故答案是:.
【点睛】
本题主要考查一元二次方程根与系数的关系,应该熟练掌握两根之和,两根之积.
14、
【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.
【详解】∵=,
∴b=a,
∴=,
故答案为:.
【点睛】
本题考查了分式,解题的关键是熟练运用分式的运算法则.
15、6
【解析】根据得到a-b=1,由是一元二次方程的两个实数根结合完全平方公式得到,根据根与系数关系得到关于k的方程即可求解.
【详解】∵,故a-b=1
∵是一元二次方程的两个实数根,
∴a+b=-5,ab=k,
2022-2023学年天津市宁河区数学九年级上册期末质量检测试题含解析 来自淘豆网m.daumloan.com转载请标明出处.