下载此文档

2022-2023学年江苏省南京市第二十九中学数学九上期末联考模拟试题含解析.doc


文档分类:中学教育 | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17 下载此文档
文档列表 文档介绍
该【2022-2023学年江苏省南京市第二十九中学数学九上期末联考模拟试题含解析 】是由【kuailonggua】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年江苏省南京市第二十九中学数学九上期末联考模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于(  )
A.20° B.30° C.40° D.60°
2.设有12只型号相同的杯子,其中一等品7只,二等品2只,三等品3只。则从中任意取一只,是二等品的概率等于 ( )
A. B. C. D.
3.已知,则下列各式中不正确的是( )
A. B. C. D.
4.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是( )
A.代入法 B.列举法 C.从特殊到一般 D.反证法
5.下列式子中,为最简二次根式的是( )
A. B. C. D.
6.有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是( )
A.x(x﹣1)=21 B.x(x﹣1)=42
C.x(x+1)=21 D.x(x+1)=42
7.若反比例函数的图像在第二、四象限,则它的解析式可能是( )
A. B. C. D.
8.如图,已知OB为⊙O的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为(  )
A.3cm B.6cm C.12cm D.24cm
9.已知抛物线的对称轴为直线,与x轴的一个交点坐标,其部分图象如图所示,下列结论:抛物线过原点;;;抛物线的顶点坐标为;当时,y随x增大而增大其中结论正确的是
A. B. C. D.
10.圆锥的母线长为4,底面半径为2,则它的侧面积为(  )
A.4π B.6π C.8π D.16π
二、填空题(每小题3分,共24分)
11.已知△ABC,D、E分别在AC、BC边上,且DE∥AB,CD=2,DA=3,△CDE面积是4,则△ABC的面积是______
12.若A(7,y1),B(5,y2),都是反比例函数的图象上的点,则y1_____y2(填“<”、”﹣”或”>”).
13.如图,若△ADE∽△ACB,且=,DE=10,则BC=________
14.在△ABC中,∠B=45°,cosA=,则∠C的度数是_____.
15.一元二次方程x2﹣4x+4=0的解是________.
16.小明和小红在太阳光下行走,,,小红比小明矮30cm,此刻小红的影长为______m.
17.如图,在平面直角坐标系中,四边形和四边形都是正方形,点在轴的正半轴上,点在边上,反比例函数的图象过点、.若,则的值为_____.
18.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出______个.
三、解答题(共66分)
19.(10分)如图,△ABC的高AD与中线BE相交于点F,过点C作BE的平行线、过点F作AB的平行线,两平行线相交于点G,连接BG.
(1)若AE=,CD=3,BD=2,求AB的长;
(2)若∠CBE=30°,求证:CG=AD+EF.
20.(6分)(1)计算:
(2),求的度数
21.(6分)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x
轴于点D,且⊙P的半径为,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线.
22.(8分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:
(1)图中的值是________;
(2)被查的200名生中最喜欢球运动的学生有________人;
(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
23.(8分)放寒假,小明的爸爸把油箱注满油后准备驾驶汽车到距家300的学校接小明,在接到小明后立即按原路返回,已知小明爸爸汽车油箱的容积为70,请回答下列问题:
(1)写出油箱注满油后,汽车能够行使的总路程与平均耗油量之间的函数关系式;
(2),在返回时由于下雨,小明的爸爸降低了车速,此时每千米的耗油量增加了一倍,如果小明的爸爸始终以此速度行使,油箱里的油是否够回到家?如果不够用,请通过计算说明至少还需加多少油?
24.(8分)如图,在平面直角坐标系xOy中,曲线经过点A.
(1)求曲线的表达式;
(2)直线y=ax+3(a≠0)与曲线围成的封闭区域为图象G.
①当时,直接写出图象G上的整数点个数是 ;(注:横,纵坐标均为整数的点称为整点,图象G包含边界.)
②当图象G内只有3个整数点时,直接写出a的取值范围.
25.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F.
(1)求证:;
(2)过点C作CG⊥BF于G,若AB=5,BC=2,求CG,FG的长.
26.(10分)关于x的一元二次方程x2+(m+4)x﹣2m﹣12=0,求证:
(1)方程总有两个实数根;
(2)如果方程的两根相等,求此时方程的根.
参考答案
一、选择题(每小题3分,共30分)
1、C
【解析】试题分析:由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得:,然后由圆周角定理可得∠BOD=2∠CAB=2×20°=40°.
故选C.
考点:圆周角定理;垂径定理.
2、B
【分析】让二等品数除以总产品数即为所求的概率.
【详解】解:∵现有12只型号相同的杯子,其中一等品7只,二等品2只,三等品3只,从中任意取1只,可能出现12种结果,是二等品的有2种可能,
∴二等品的概率.
故选:B.
【点睛】
本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
3、C
【分析】依据比例的基本性质,将比例式化为等积式,即可得出结论.
【详解】A. 由可得,变形正确,不合题意;
B. 由可得,变形正确,不合题意;
C. 由可得,变形不正确,符合题意;
D. 由可得,变形正确,不合题意.
故选C.
【点睛】
本题考查了比例的性质,此题比较简单,解题的关键是掌握比例的变形.
4、C
【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.
【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,
∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法.
故选C.
【点睛】
本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键.
5、B
【分析】利用最简二次根式定义判断即可.
【详解】A、原式,不符合题意;
B、是最简二次根式,符合题意;
C、原式,不符合题意;
D、原式,不符合题意;
故选B.
【点睛】
此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.
6、B
【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:x(x-1)场.根据题意可知:此次比赛的总场数=21场,依此等量关系列出方程即可.
【详解】设这次有x队参加比赛,则此次比赛的总场数为x(x−1)场,
根据题意列出方程得:x(x−1)=21,
整理,得:x(x−1)=42,
故答案为x(x−1)=42.
故选B.
【点睛】
本题考查由实际问题抽象出一元二次方程,准确找到等量关系是解题的关键.
7、A
【分析】根据反比例函数的定义及图象经过第二、四象限时,判断即可.
【详解】解:、对于函数,是反比例函数,其,图象位于第二、四象限;
、对于函数,是正比例函数,不是反比例函数;
、对于函数,是反比例函数,图象位于一、三象限;
、对于函数,是二次函数,不是反比例函数;
故选:A.
【点睛】
本题考查了反比例函数、反比例的图象和性质,可以采用排除法,直接法得出答案.
8、C
【分析】根据OB=10cm,OM:MB=4:1,可求得OM的长,再根据垂径定理和勾股定理可计算出答案.
【详解】∵弦CD⊥OB于M,
∴CM=DM=CD,
∵OM:MB=4:1,
∴OM=OB=8cm,
∴CM=(cm),
∴CD=2CM=12cm,
故选:C.
【点睛】
本题考查了垂径定理和勾股定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.
9、C
【解析】∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),
∴抛物线与x轴的另一个交点为(0,0),故①正确,
当x=﹣1时,y=a﹣b+c>0,故②错误,
∵,得4a+b=0,b=﹣4a,
∵抛物线过点(0,0),则c=0,
∴4a+b+c=0,故③正确,
∴y=ax2+bx=a(x+)2﹣=a(x+)2﹣=a(x﹣2)2﹣4a=a(x﹣2)2+b,
∴此函数的顶点坐标为(2,b),故④正确,
当x<1时,y随x的增大而减小,故⑤错误,
故选C.
点睛:.
10、C
【分析】求出圆锥的底面圆周长,利用公式即可求出圆锥的侧面积.
【详解】解:圆锥的地面圆周长为2π×2=4π,
则圆锥的侧面积为×4π×4=8π.
故选:C.
【点睛】
本题考查了圆锥的计算,能将圆锥侧面展开是解题的关键,并熟悉相应的计算公式.
二、填空题(每小题3分,共24分)
11、25
【分析】根据DE∥AB得到△CDE∽△CAB,再由CD和DA的长度得到相似比,从而确定△ABC的面积.
【详解】解:∵DE∥AB,
∴△CDE∽△CAB,
∵CD=2,DA=3,
∴,
又∵△CDE面积是4,
∴,
即,
∴△ABC的面积为25.
【点睛】
本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的面积之比等于相似比的平方.
12、<
【分析】先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.
【详解】∵反比例函数y=中,k=1>0,
∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小.
∵7>5,
∴y1<y1.
故答案为:<.
【点睛】
本题考查了反比例函数的图象与性质,掌握反比例函数的增减性与比例系数k的符号之间的关系是关键.
13、15
【分析】根据相似三角形的性质,列出比例式即可解决问题.
【详解】解:∵△ADE∽△ACB,
∴,DE=10,
∴,
∴.
【点睛】
本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.
14、75°
【解析】已知在△ABC中°,cosA=,可得∠A=60°,又因∠B=45,根据三角形的内角和定理可得∠C=75°.
15、x1=x2=2
【分析】根据配方法即可解方程.
【详解】解:x2﹣4x+4=0
(x-2)2=0
∴x1=x2=2
【点睛】
本题考查了用配方法解一元二次方程,属于简单题,选择配方法是解题关键.
16、
【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.
【详解】解:根据题意知,小红的身高为150-30=120(厘米),
设小红的影长为x厘米
则,
解得:x=160,
∴,

【点睛】
此题主要考查了平行投影,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出的影长,体现了方程的思想.
17、

2022-2023学年江苏省南京市第二十九中学数学九上期末联考模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数17
  • 收藏数0 收藏
  • 顶次数0
  • 上传人kuailonggua
  • 文件大小694 KB
  • 时间2025-01-27
最近更新