下载此文档

2022-2023学年江苏省无锡市新吴区九年级数学上册期末考试模拟试题含解析.doc


文档分类:中学教育 | 页数:约23页 举报非法文档有奖
1/23
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/23 下载此文档
文档列表 文档介绍
该【2022-2023学年江苏省无锡市新吴区九年级数学上册期末考试模拟试题含解析 】是由【kuailonggua】上传分享,文档一共【23】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年江苏省无锡市新吴区九年级数学上册期末考试模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴的正半轴交于点C.现有下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0;④3a+c=0,其中,正确结论的个数是( )
A.1 B.2 C.3 D.4
2.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
3.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是( )
A. B. C. D.
4.将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是( )
A. B. C. D.
5.下列事件中,属于必然事件的是( )
A.2020年的除夕是晴天 B.太阳从东边升起
C.打开电视正在播放新闻联播 D.在一个都是白球的盒子里,摸到红球
6.下列说法正确的是(  )
A.打开电视机,正在播放广告是必然事件
B.天气预报明天下雨的概率为%,说明明天一定会下雨
C.买一张体育彩票会中奖是可能事件
D.长度分别为3,5,9厘米的三条线段不能围成一个三角形是随机事件
7.如图,在△ABC中,AB=,BC=,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为(  )
A. B. C. D.
8.对于题目“如图,在中,是边上一动点,于点,点在点的右侧,且,连接,从点出发,沿方向运动,当到达点时,停止运动,在整个运动过程中,求阴影部分面积的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中( )
A.甲的结果正确 B.乙的结果正确
C.甲、乙的结果都不正确,应是一直增大 D.甲、乙的结果都不正确,应是一直减小
9.如图,抛物线交x轴的负半轴于点A,点B是y轴的正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上.过点Aʹ作x轴的平行线交抛物线于另一点C,则点Aʹ的纵坐标为()
A. B.2 C. D.3
10.如图,△ABC中,点D是AB的中点,点E是AC边上的动点,若△ADE与△ABC相似,则下列结论一定成立的是( )
A.E为AC的中点 B.DE是中位线或AD·AC=AE·AB
C.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°
二、填空题(每小题3分,共24分)
11.如图,一路灯B距地面高BA=7m,,沿A→H的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变长了_____m.
12.如图,,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.
13.如图的顶点在轴的正半轴上,顶点在轴的负半轴上,顶点在第一象限内,交轴于点,过点作交的延长线于点.若反比例函数经过点,且,,则值等于__________.
14.如图,中,,点位于第一象限,点为坐标原点,点在轴正半轴上,若双曲线与的边、分别交于点、,点为的中点,连接、.若,则为_______________.
15.一个直角三角形的两直角边长分别为和,则这个直角三角形的面积是_____cm1.
16.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点D与点B重合,折痕为EF,则ΔABE的面积为________cm2.
17.A、B为⊙O上两点,C为⊙O上一点(与A、B不重合),若∠ACB=100°,则∠AOB的度数为____°.
18.在△ABC中,若∠A=30°,∠B=45°,AC=,则BC=_______.
三、解答题(共66分)
19.(10分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
20.(6分)已知△ABC和△A′B′C′的顶点坐标如下表:
(1)将下表补充完整,并在下面的坐标系中,画出△A′B′C′;
( , )
( , )
(2)观察△ABC与△A′B′C′,写出有关这两个三角形关系的一个正确结论.
21.(6分)如图,在梯形ABCD中,AD//BC,AC与BD相交于点O,点E在线段OB上,AE的延长线与BC相交于点F,OD2 = OB·OE.
(1)求证:四边形AFCD是平行四边形;
(2)如果BC=BD,AE·AF=AD·BF,求证:△ABE∽△ACD.
22.(8分)如图所示,要在底边BC=160cm,高AD=120cm的△ABC铁皮余料上,截取一个矩形EFGH,使点H在AB
上,点G在AC上,点E,F在BC上,AD交HG于点M.
(1)设矩形EFGH的长HG=ycm,宽HE=;
(2)当x为何值时,矩形EFGH的面积S最大?最大值是多少?
23.(8分)已知关于的方程有实数根.
(1)求的取值范围;
(2)若该方程有两个实数根,分别为和,当时,求的值.
24.(8分)永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑. 法如下:如图所示,间接测得该塔底部点到地面上一点的距离为,塔的顶端 为点,且,在点处竖直放一根标杆,其顶端为,在的延长 线上找一点,使三点在同一直线上,测得.
(1)方法 1,已知标杆,求该塔的高度;
(2)方法 2,测得,已知,求该塔的高度.
25.(10分)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.
26.(10分)如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).
(1)求B、C坐标;
(2)求证:BA⊥AC;
(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、B
【分析】由抛物线的开口方向,判断a与0的关系;由对称轴与y轴的位置关系,判断ab与0的关系;由抛物线与y轴的交点,判断c与0的关系,进而判断abc与0的关系,据此可判断①.由x=﹣2时,y=4a﹣2b+c,再结合图象x=﹣2时,y>0,即可得4a﹣2b+c与0的关系,据此可判断②.根据图象得对称轴为x=﹣>﹣1,即可得2a﹣b与0的关系,据此可判断③.由x=1时,y=a+b+c,再结合2a﹣b与0的关系,即可得3a+c与0的关系,据此可判断④.
【详解】解:①∵抛物线的开口向下,
∴a<0,
∵对称轴位于y轴的左侧,
∴a、b同号,即ab>0,
∵抛物线与y轴交于正半轴,
∴c>0,
∴abc>0,
故①正确;
②如图,当x=﹣2时,y>0,即4a﹣2b+c>0,
故②正确;
③对称轴为x=﹣>﹣1,得2a<b,即2a﹣b<0,
故③错误;
④∵当x=1时,y=0,
∴0=a+b+c,
又∵2a﹣b<0,即b>2a,
∴0=a+b+c>a+2a+c=3a+c,即3a+c<0,
故④错误.
综上所述,①②正确,即有2个结论正确.
故选:B.
【点睛】
本题考查二次函数图象位置与系数的关系.熟练掌握二次函数开口方向、对称轴、与坐标轴交点等性质,并充分运用数形结合是解题关键.
2、A
【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,
∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
∴∠C=∠FDE,
同理可得:∠B=∠DFE,∠A=DEF,
∴△DEF∽△CAB,
∴△DEF与△ABC的面积之比= ,
又∵△ABC为正三角形,
∴∠B=∠C=∠A=60°
∴△EFD是等边三角形,
∴EF=DE=DF,
又∵DE⊥AC,EF⊥AB,FD⊥BC,
∴△AEF≌△CDE≌△BFD,
∴BF=AE=CD,AF=BD=EC,
在Rt△DEC中,
DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
又∵DC+BD=BC=AC=DC,
∴,
∴△DEF与△ABC的面积之比等于:
故选A.
点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
3、B
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的两位数是3的倍数的情况,再利用概率公式即可求得答案.
【详解】画树状图得:
∵共有12种等可能的结果,组成的两位数是3的倍数的有4种情况,
∴组成的两位数是3的倍数的概率是:.
故选:B
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
4、B
【分析】把配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.
【详解】解:将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:
故选:B
【点睛】
考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
5、B
【分析】根据必然事件和随机事件的概念进行分析.
【详解】A选项:2020年的元旦是晴天,属于随机事件,故不合题意;
B选项:太阳从东边升起,属于必然事件,故符合题意;
C选项:打开电视正在播放新闻联播,属于随机事件,故不合题意;
D选项:在一个都是白球的盒子里,摸到红球,属于不可能事件,故不合题意.
故选:B.
【点睛】
考查了确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件;注:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.
6、C
【分析】根据必然事件,随机事件发生的可能性逐一判断即可.
【详解】,正在播放广告是随机事件,故错误;
%,明天也不一定会下雨,故错误;
,故正确;
,5,9厘米的三条线段不能围成一个三角形是必然事件,故错误;
故选:C.
【点睛】
本题主要考查随机事件和必然事件,掌握随机事件和必然事件发生的可能性是解题的关键.
7、B
【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.
【详解】解:如图,由题意得:AD=AB,且∠B=60°,
∴△ABD为等边三角形,
∴BD=AB=2,
∴CD=﹣=.
故选:B.
【点睛】
该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.

2022-2023学年江苏省无锡市新吴区九年级数学上册期末考试模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数23
  • 收藏数0 收藏
  • 顶次数0
  • 上传人kuailonggua
  • 文件大小1.08 MB
  • 时间2025-01-27
最近更新