该【2022-2023学年江苏省扬州大附属中学数学九上期末质量跟踪监视模拟试题含解析 】是由【286919636】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年江苏省扬州大附属中学数学九上期末质量跟踪监视模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P,则P的值为( )
A. B. C. 或 D. 或
2.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为( )
A.45° B.15° C.10° D.125°
3.如图,、分别与相切于、两点,点为上一点,连接,,若,则的度数为( )
A. B. C. D.
4.△ABC的外接圆圆心是该三角形( )的交点.
A.三条边垂直平分线 B.三条中线
C.三条角平分线 D.三条高
5.下列函数是关于的反比例函数的是( )
A. B. C. D.
6.圆心角为140°的扇形的半径为3cm,则这个扇形的面积是( )cm1.
A.π B.3π C.9π D.6π
7.若反比例函数的图象过点(-2,1),则这个函数的图象一定过点( )
A.(2,-1) B.(2,1) C.(-2,-1) D.(1,2)
8.下列事件中,属于不确定事件的有( )
①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④小明长大后成为一名宇航员.
A.①②③ B.①③④ C.②③④ D.①②④
9.一元二次方程的根的情况为( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
10.如图,已知是中的边上的一点,,的平分线交边于,交于,那么下列结论中错误的是( )
A.△BAC∽△BDA B.△BFA∽△BEC
C.△BDF∽△BEC D.△BDF∽△BAE
二、填空题(每小题3分,共24分)
11.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.
(1)甲的速度______乙的速度.(大于、等于、小于)
(2)甲乙二人在______时相遇;
(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.
12.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.
13.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.
14.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab= .
15.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.
16.一次测试,包括甲同学在内的6名同学的平均分为70分,其中甲同学考了45分,则除甲以外的5名同学的平均分为_____分.
17.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.
18.如图,在平面直角坐标系中,点A是x轴正半轴上一点,菱形OABC的边长为5,且tan∠COA=,若函数的图象经过顶点B,则k的值为________.
三、解答题(共66分)
19.(10分)解方程
(1)
(2)
20.(6分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.
(1)先将竖直向下平移5个单位长度,再水平向右平移1个单位长度得到,请画出;
(2)将绕点顺时针旋转,得,请画出;
(3)求线段变换到的过程中扫过区域的面积.
21.(6分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).
(1)按下列要求作图:
①将△ABC向左平移4个单位,得到△A1B1C1;
②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.
(1)求点C1在旋转过程中所经过的路径长.
22.(8分)如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:
(1)当t为何值时,△QAP是等腰直角三角形?
(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
23.(8分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.
(1)求∠CFA度数;
(2)求证:AD∥BC.
24.(8分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
25.(10分)《海岛算经》第一个问题的大意是:如图,要测量海岛上一座山峰的高度,立两根高丈的标杆和,两竿之间的距步,成一线,从处退行步到,人的眼睛贴着地面观察点,三点成一线;从处退行步到,从观察点,三点也成一-线.试计算山峰的高度及的长. (这里步尺,丈尺,结果用丈表示) .怎样利用相似三角形求得线段及的长呢?请你试一试!
26.(10分)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.
(1)求P点的坐标;
(2)若△POQ的面积为9,求k的值.
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】分情况讨论后,直接利用概率公式进行计算即可.
【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=
当白球2个,红球1个时:摸到的红球的概率为:P=
故摸到的红球的概率为:或
故选:D
【点睛】
本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.
2、A
【分析】由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.
【详解】是等边三角形,
,,
四边形是正方形,
,,
,,
,
.
故选:.
【点睛】
本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.
3、C
【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.
【详解】解:连接、,
∵、分别与相切于、两点,
∴,,
∴.
∴,
∴.
故选C.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.
4、A
【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.
【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,
故选:A.
【点睛】
本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键
.
5、B
【分析】根据反比例函数的定义进行判断.
【详解】A.,是一次函数,此选项错误;
B.,是反比例函数,此选项正确;
C.,是二次函数,此选项错误;
D.,是y关于(x+1)的反比例函数,此选项错误.
故选:B
【点睛】
本题考查了反比例函数的定义,解题的关键是掌握反比例函数的定义.
6、D
【解析】试题分析:扇形面积的计算公式为:,故选择D.
7、A
【解析】先把(- 2,1)代入y=求出k得到反比例函数解析式为y=,然后根据反比例函数图象上点的坐标特征,通过计算各点的横纵坐标的积进行判断.
【详解】把(-2,1)代入y=得k=-2×1=-2,
所以反比例函数解析式为y=,
因为2×(-1)=-2, 2×1=2,-2×(-1)=2,1×2=2,
所以点(2,-1)在反比例函数y=的图象上.
故选A.
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
8、C
【解析】因为不确定事件即随机事件是指在一定条件下,可能发生,也可能不发生的事件,确定事件包括必然事件和不可能事件,所以①太阳从西边升起,是不可能发生的事件,是确定事件, ②任意摸一张体育彩票会中奖,是不确定事件, ③掷一枚硬币,有国徽的一面朝下,是不确定事件, ④小明长大后成为一名宇航员,是不确定事件,故选C.
点睛:本题考查确定事件和不确定事件的定义,解决本题的关键是要熟练掌握确定事件和不确定事件的定义.
9、D
【分析】先根据计算判别式的值,然后根据判别式的意义判断方程根的情况.
【详解】因为△=,
所以方程无实数根.
故选:D.
【点睛】
本题考查了根的判别式:一元二次方程的根与有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
10、C
【分析】根据相似三角形的判定,采用排除法,逐项分析判断.
【详解】∵∠BAD=∠C,
∠B=∠B,
∴△BAC∽△BDA.故A正确.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴△BFA∽△BEC.故B正确.
∴∠BFA=∠BEC,
∴∠BFD=∠BEA,
∴△BDF∽△BAE.故D正确.
而不能证明△BDF∽△BEC,故C错误.
故选C.
【点睛】
本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.
二、填空题(每小题3分,共24分)
11、 (1)、小于;(2)、6;(3)、9、4
【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.
考点:函数图像的应用
12、
【分析】连接CE,过点B作BH⊥CD交CD的延长线于点H,可证四边形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分线的性质可得BE=CE,CD=BD,可证CE=BE=CD=DB,通过证明Rt△ACE≌Rt△HBD,可得AE=DH,通过证明△ACD∽△DHB,可得AC2=AE•BE,由勾股定理可得BE2﹣AE2=AC2,可得关于BE,AE的方程,即可求解.
【详解】解:连接CE,过点B作BH⊥CD交CD的延长线于点H,
∵AC是半圆的切线
∴AC⊥AB,
∵CD∥AB,
∴AC⊥CD,且BH⊥CD,AC⊥AB,
∴四边形ACHB是矩形,
∴AC=BH,AB=CH,
∵DE垂直平分BC,
∴BE=CE,CD=BD,且DE⊥BC,
∴∠BED=∠CED,
∵AB∥CD,
∴∠BED=∠CDE=∠CED,
∴CE=CD,
∴CE=BE=CD=DB,
∵AC=BH,CE=BD,
∴Rt△ACE≌Rt△HBD(HL)
∴AE=DH,
∵CE2﹣AE2=AC2,
∴BE2﹣AE2=AC2,
∵AB是直径,
∴∠ADB=90°,
∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,
∴∠CAD=∠BDH,且∠ACD=∠BHD,
2022-2023学年江苏省扬州大附属中学数学九上期末质量跟踪监视模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.