下载此文档

2022-2023学年江西省吉安吉安县联考数学八年级第一学期期末达标检测模拟试题含解析.doc


文档分类:中学教育 | 页数:约19页 举报非法文档有奖
1/19
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/19 下载此文档
文档列表 文档介绍
该【2022-2023学年江西省吉安吉安县联考数学八年级第一学期期末达标检测模拟试题含解析 】是由【286919636】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年江西省吉安吉安县联考数学八年级第一学期期末达标检测模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )
A. B. C. D.
2.下列说法正确的是( )
A.如果两个三角形全等,则它们必是关于某条直线成轴对称的图形
B.如果两个三角形关于某条直线成轴对称,则它们必是全等三角形
C.等腰三角形是关于一条边上的中线成轴对称的图形
D.一条线段是关于经过该线段中点的直线成轴对称的图形
3.64的平方根是( )
A.8 B. C. D.32
4.下列计算中,正确的是(  )
A.x3•x2=x4 B.x(x-2)=-2x+x2
C.(x+y)(x-y)=x2+y2 D.3x3y2÷xy2=3x4
5.数据5,7,8,8,9的众数是( )
A.5 B.7 C.8 D.9、
6.将长方形纸片按如图所示的方式折叠,BC、BD为折痕,若∠ABC=35°,则∠DBE的度数为
A.55° B.50° C.45° D.60°
7.入冬以来,我校得流行性感冒症状较重,,( )
A. B. C. D.
8.如图,在中,其中,的平分线交于点,是的垂直平分线,,则图中长度为的线段有( )
A.1条 B.2条 C.3条 D.4条
9.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设( )
A.三角形中有一个内角小于或等于60° B.三角形中有两个内角小于或等于60°
C.三角形中有三个内角小于或等于60° D.三角形中没有一个内角小于或等于60°
10.若分式有意义,则的取值范围是 (  )
A. B. C. D.且
二、填空题(每小题3分,共24分)
11.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为_____.
12.现有一个长方形纸片,其中.如图所示,折叠纸片,使点落在边上的处,折痕为,当点在上移动时,折痕的端点、也随之移动.若限定、分别在、边上移动,则点在边上可移动的最大距离为_________.
13.小明把一副含45°,30°角的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠1+∠2等于_________.
14.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_____.
15.为了增强学生体质,某学校将“抖空竹”引阳光体育一小时活动,图1是一位同学抖空竹时的一个瞬间,小明把它抽象成图2的数学问题:已知,则的度数是_____.
16.如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,若AB=4,BC=6,则OD的长为_____.
17.已知点(-2,y),(3,y)都在直线y=kx-1上,且k小于0,则y1与y2的大小关系是__________.
18.因式分解:ax3y﹣axy3=_____.
三、解答题(共66分)
19.(10分)计划新建的北京至张家口铁路全长180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的倍,用时比普通快车少20分钟.求高铁列车的平均行驶速度.
20.(6分)(尺规作图,保留作图痕迹,不写作法)如图,已知:△ABC(其中∠B>∠A).
(1)在边AC上作点D,使∠CDB=2∠A;
(2)在(1)的情况下,连接BD,若CB=CD,∠A=35°,则∠C的度数为   .
21.(6分)某地长途汽车公司规定旅客可随身携带一定质量的行李,如果超过规定质量,则需要购买行李票,行李票元是行李质量的一次函数,如图所示:
(1)求与之间的表达式
(2)求旅客最多可免费携带行李的质量是多少?
22.(8分)观察下列两个数的积(这两个数的十位上的数相同,个位上的数的和等于),你发现结果有什么规律?




(1)设这两个数的十位数字为,个位数字分别为和,请用含和的等式表示你发现的规律;
(2)请验证你所发现的规律;
(3)利用你发现的规律直接写出下列算式的答案.
; ; ; .
23.(8分)先化简,再求值.,其中x=1.
24.(8分)如图,傅家堰中学新修了一个运动场,运动场的两端为半圆形,中间区域为足球场,外面铺设有塑胶环形跑道,四条跑道的宽均为1米.
(1)用含a、b的代数式表示塑胶环形跑道的总面积;
(2)若a=60米,b=20米,每铺1平方米塑胶需120元,求四条跑道铺设塑胶共花费多少元?(π=3)
25.(10分)已知函数y=(m+1)x2-|m|+n+1.
(1)当m,n为何值时,此函数是一次函数?
(2)当m,n为何值时,此函数是正比例函数?
26.(10分)(问题原型)如图1,在等腰直角三形ABC中,∠ACB=90°,BC=1.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为    .
(初步探究)如图2.在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积并说明理由.
(简单应用)如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连续CD,求△BCD的面积(用含a的代数式表示).
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】先根据程序框图列出正确的函数关系式,然后再根据函数关系式来判断其图象是哪一个.
【详解】根据程序框图可得y=-x×(-3)-6=3x-6,化简,得y=3x-6,
y=3x-6的图象与y轴的交点为(0,-6),与x轴的交点为(2,0).
故选:D.
【点睛】
此题考查一次函数图象,列出函数关系式,解题的关键是首先根据框图写出正确的解析式.
2、B
【分析】根据成轴对称图形的定义依次判断即可得到答案
【详解】两个全等三角形放置的位置不一定使两个三角形成轴对称,故A错误;
成轴对称的两个三角形一定是全等三角形,故B正确;
等腰三角形是关于底边上的中线成轴对称的图形,故C错误;
直线是轴对称图形,不是成轴对称的图形,故D错误,
故选:B.
【点睛】
此题考查成轴对称图形的性质,需注意成轴对称的图形是对于两个图形而言,正确理解成轴对称的图形的特征是解题的关键.
3、C
【分析】根据平方根的定义:如果一个数的平方等于,这个数就叫做的平方根,即可得解
.
【详解】由已知,得
64的平方根是,
故选:C.
【点睛】
此题主要考查对平方根的理解,熟练掌握,即可解题.
4、B
【分析】根据同底数幂的乘法、整式的乘法和除法计算即可.
【详解】解:A、x3•x2=x5,错误;
B、x(x-2)=-2x+x2,正确;
C、(x+y)(x-y)=x2-y2,错误;
D、3x3y2÷xy2=3x2,错误;
故选:B.
【点睛】
本题考查了同底数幂的乘法、单项式乘多项式、平方差公式和单项式的除法运算,熟练掌握运算法则是解答本题的关键.
5、C
【详解】解:根据众数是一组数据中出现次数最多的数,数据5、7、1、1、9中1出现了2次,且次数最多,所以众数是1.
故选C.
【点睛】
本题考查众数.
6、A
【分析】根据折叠的性质可知∠ABC=∠A’BC,∠DBE=∠DBE’,然后根据平角等于180°代入计算即可得出答案.
【详解】解:由折叠的性质可知∠ABC=∠A’BC=35°,∠DBE=∠DBE’,
∴∠EBE’=180°-∠ABC-∠A’BC
=180°-35°-35°
=110°,
∴∠DBE=∠DBE’=∠EBE’=×110°=55°.
故选A.
【点睛】
本题考查了折叠的性质和角的计算,熟知折叠后重合的角相等是解决此题的关键.
7、B
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】=×10-1.
故选:B.
【点睛】
此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
8、C
【分析】由角平分线的性质可得,垂直平分线的性质可得,然后通过勾股定理计算一下其他的线段的长度,从而可得出答案.
【详解】∵BD平分,,
∵是的垂直平分线

在和中,

∴长度为的线段有AB,BE,EC
故选:C.
【点睛】
本题主要考查角平分线的性质及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.
9、D
【分析】熟记反证法的步骤,直接选择即可.
【详解】根据反证法的步骤,第一步应假设结论的反面成立,
即假设三角形中没有一个内角小于或等于60°.
故选D.
【点睛】
此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.
10、D
【解析】∵分式有意义,
∴,
∴且,解得且.
故选D.
二、填空题(每小题3分,共24分)
11、20°.
【分析】依据题意,设出顶角度数,根据“特征值”可知底角度数,再由三角形内角和定理即可求得.
【详解】如图.
∵△ABC中,AB=AC,
∴∠B=∠C,
∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,
∴∠A:∠B=1:4,
∵∠A+∠B+∠C=180°,
∴∠A+4∠A+4∠A=180°,
即9∠A=180°,
∴∠A=20°,
故答案为:20°.
【点睛】
本题主要考查了等腰三角形的性质以及三角形内角和定理的知识,灵活运用这部分知识是解决本题的关键.
12、1
【解析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
【详解】①当P与B重合时,BA′=BA=6,
CA′=BC−BA′=10−6=1,
②当Q与D重合时,由勾股定理,得
CA′==8,
CA′最远是8,CA′最近是1,点A′在BC边上可移动的最大距离为8−1=1,
故答案为1.
【点睛】
本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
13、210°
【分析】由三角形外角定理可得,,故==,根据角的度数代入即可求得.
【详解】
∵,,
∴=


=210°.
故答案为:210°.
【点睛】
本题主要考查了三角形外角性质,熟练掌握三角形中角的关系是解题的关键.
14、130°或90°.
【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.
详解:∵在△ABC中,AB=AC,∠BAC=100°,
∴∠B=∠C=40°,

2022-2023学年江西省吉安吉安县联考数学八年级第一学期期末达标检测模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数19
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小807 KB
  • 时间2025-01-28
最近更新