下载此文档

2022-2023学年河北石家庄市长安区第十中学数学八年级第一学期期末监测试题含解析.doc


文档分类:中学教育 | 页数:约22页 举报非法文档有奖
1/22
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/22 下载此文档
文档列表 文档介绍
该【2022-2023学年河北石家庄市长安区第十中学数学八年级第一学期期末监测试题含解析 】是由【286919636】上传分享,文档一共【22】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年河北石家庄市长安区第十中学数学八年级第一学期期末监测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列各组图形中,是全等形的是( )
A.两个含60°角的直角三角形
B.腰对应相等的两个等腰直角三角形
C.边长为3和4的两个等腰三角形
D.一个钝角相等的两个等腰三角形
2.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是(  )
A.平行 B.相交 C.垂直 D.平行、相交或垂直
3.下面说法中,正确的是( )
A.把分式方程化为整式方程,则这个整式方程的解就是这个分式方程的解
B.分式方程中,分母中一定含有未知数
C.分式方程就是含有分母的方程
D.分式方程一定有解
4.分式的值为0,则的值是  
A. B. C. D.
5.已知、均为正整数,且,则( )
A. B. C. D.
6.如图,中,,,在直线或上取一点,使为等腰三角形,则符合条件的点共有( )
A.个 B.个 C.个 D.个
7.如图,点A的坐标为(8,0),点B为y轴负半轴上的一动点,分别以OB,AB为直角边在第三、第四象限作等腰直角三角形OBF,等腰直角三角形ABE,连接EF交y轴与P点,当点B在y轴上移动时,则PB的长度是( )
A.2 B.4 C.不是已知数的定值 D.PB的长度随点B的运动而变化
8.将一副常规的三角尺按如图方式放置,则图中∠1的度数为( )
A.95° B.100° C.105° D.115°
9.下列命题是真命题的是(  )
A.如果 a>b,a>c,那么 b=c
B.相等的角是对顶角
C.一个角的补角大于这个角
D.一个三角形中至少有两个锐角
10.如图,正方期ABCD的边长为4,点E在对角线BD上,且为F,则EF的长为( )

A.2 B. C. D.
二、填空题(每小题3分,共24分)
11.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是 .
12.比较大小:2_____1.(填“>”、“<”或“=”号)
13.质检员小李从一批鸡腿中抽查了只鸡腿,它们的质量如下(单位:):,,,,,,,这组数据的极差是_____.
14.当____________时,分式的值为零.
15.20192﹣2020×2018=_____.
16.定义:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形,在中,,且,如果是奇异三角形,那么______________.
17.多项式4x2+1加上一个单项式,使它成为一个整式的完全平方,则这个单项式可以是__________________.(填写符合条件的一个即可)
18.经过、两点的圆的圆心的轨迹是______.
三、解答题(共66分)
19.(10分)解下列分式方程:
(1)=1
(2)
20.(6分)如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,AD=BD=6厘米.
(1)如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,点P运动到BC的中点时,如果△BPD≌△CPQ,此时点Q的运动速度为多少.
(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
21.(6分)某服务厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(I)买一套西装送一条领带;(II)西装和领带均按定价的90%付款.某超市经理现要到该服务厂购买西装20套,领带若干条(不少于20条).
(1)设购买领带为x(条),采用方案I购买时付款数为y1(元),采用方案II购买时付款数为(元).分别写出采用两种方案购买时付款数与领带条数x之间的函数关系式;
(2)就领带条数x讨论在上述方案中采用哪种方案购买合算.
22.(8分)如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.
23.(8分)方格纸中的每个小方格都是边长为1个单位的正方形,建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(3,1).
(1)画出△ABC关于y轴对称的△A1B1C1
(2)将△A1B1C1向下平移3个单位后得到△A2B2C2,画出平移后的△A2B2C2,并写出顶点B2的坐标.
24.(8分)求下列各式的值:
(1)已知 ,求代数式 的值;
(2)已知a=,求代数式[(ab+1) (ab- 2) - 2a2b2 +2] (-ab)的值.
25.(10分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:





频数分布表
分组
划记
频数
<x≤
正正
11
<x≤
19
<x≤
<x≤
<x≤
2
合计
50
(1)把上面频数分布表和频数分布直方图补充完整;
(2)从直方图中你能得到什么信息?(写出两条即可);
(3)为了鼓励节约用水,要确定一个用水量的标准,,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?
26.(10分)已知:如图OA平分∠BAC,∠1=∠1.
求证:AO⊥BC.
同学甲说:要作辅助线;
同学乙说:要应用角平分线性质定理来解决:
同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.
请你结合同学们的讨论写出证明过程.
参考答案
一、选择题(每小题3分,共30分)
1、B
【解析】试题解析:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;
B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;
C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;
D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.
故选B.
【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.
2、A
【解析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.
【详解】∵∠AOB=60°,OA=OB,
∴△OAB是等边三角形,
∴OA=AB,∠OAB=∠ABO=60°
①当点C在线段OB上时,如图1,
∵△ACD是等边三角形,
∴AC=AD,∠CAD=60°,
∴∠OAC=∠BAD,
在△AOC和△ABD中,,
∴△AOC≌△ABD,
∴∠ABD=∠AOC=60°,
∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,
∴BD∥OA;
②当点C在OB的延长线上时,如图2,
∵△ACD是等边三角形,
∴AC=AD,∠CAD=60°,
∴∠OAC=∠BAD,
在△AOC和△ABD中,,
∴△AOC≌△ABD,
∴∠ABD=∠AOC=60°,
∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,
∴BD∥OA,
故选A.
【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.
3、B
【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断,即可得出答案.
【详解】解:、把分式方程化为整式方程,这个整式方程的解不一定是这个分式方程的解,故本选项错误;
、分式方程中,分母中一定含有未知数,故本选项正确;
、根据分式方程必须具备两个条件:①分母含有未知数;②是等式,故本选项错误;
、分式方程不一定有解,故本选项错误;
故选:B.
【点睛】
此题考查了分式方程的定义,判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).
4、B
【分析】分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】由式的值为1,得
,且.
解得.
故选:.
【点睛】
此题考查分式值为1,掌握分式值为1的两个条件是解题的关键.
5、C
【分析】根据幂的乘方,把变形为,然后把代入计算即可.
【详解】∵,
∴=.
故选C.
【点睛】
本题考查了幂的乘方运算,熟练掌握幂的乘方法则是解答本题的关键.幂的乘方底数不变,指数相乘.
6、B
【分析】分别以A为顶点、B为顶点、P为顶点讨论即可.
【详解】以点A为圆心,AB为半径作圆,交AC于P1,P2,交BC与P3,此时满足条件的等腰△PAB有3个;
以点B为圆心,AB为半径作圆,交AC于P5,交BC与P4,P6,此时满足条件的等腰△PAB有3个;
作AB的垂直平分线,交BC于P7,此时满足条件的等腰△PAB有1个;
∵,∴∠ABP3=60°,
∵AB=AP3,
∴△ABP3是等边三角形;
同理可证△ABP6,△ABP6是等边三角形,即△ABP3,△ABP6,△ABP7重合,
综上可知,满足条件的等腰△PAB有5个.
故选B.
【点睛】
本题考查了等腰三角形的定义,等边三角形的判定,以及分类讨论的数学思想,分类讨论是解答本题的关键.
7、B
【分析】作EN⊥y轴于N,求出∠NBE=∠BAO,证△ABO≌△BEN,求出∠OBF=∠FBP=∠BNE=90°,证△BFP≌△NEP,推出BP=NP,即可得出答案.
【详解】解:如图,作EN⊥y轴于N,
∵∠ENB=∠BOA=∠ABE=90°,
∴∠OBA+∠NBE=90°,∠OBA+∠OAB=90°,
∴∠NBE=∠BAO,
在△ABO和△BEN中,

∴△ABO≌△BEN(AAS),
∴OB=NE=BF,
∵∠OBF=∠FBP=∠BNE=90°,
在△BFP和△NEP中,

∴△BFP≌△NEP(AAS),
∴BP=NP,
又∵点A的坐标为(8,0),

2022-2023学年河北石家庄市长安区第十中学数学八年级第一学期期末监测试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数22
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小821 KB
  • 时间2025-01-28
最近更新