下载此文档

2022-2023学年河南省郑州市登封市数学九上期末检测试题含解析.doc


文档分类:中学教育 | 页数:约31页 举报非法文档有奖
1/31
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/31 下载此文档
文档列表 文档介绍
该【2022-2023学年河南省郑州市登封市数学九上期末检测试题含解析 】是由【286919636】上传分享,文档一共【31】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年河南省郑州市登封市数学九上期末检测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程( )
A. B. C.
D.
2.如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为( )
A. B. C. D.
3.⊙O的半径为15cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=18cm,则AB和CD之间的距离是( )
A.21cm B.3cm
C.17cm或7cm D.21cm或3cm
4.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是(  )
A.① B.② C.③ D.④
5.化简的结果是
A.-9 B.-3 C.±9 D.±3
6.函数y=与y=kx+k(k为常数且k≠0)在同一平面直角坐标系中的图象可能是(  )
A. B. C. D.
7.如图,在线段AB上有一点C,在AB的同侧作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直线BD与线段AE,线段CE分别交于点F,:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,则2AD2=DF·( )
A.①②③④ B.①②③ C.①③④ D.①②
8.反比例函数图象的一支如图所示,的面积为2,则该函数的解析式是(  )
A. B. C. D.
9.在△ABC中,∠C=90°,AB=12,sinA=,则BC等于(  )
A. B.4 C.36 D.
10.下列计算正确的是(  )
A.3x﹣2x=1 B.x2+x5=x7
C.x2•x4=x6 D.(xy)4=xy4
11.我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是(  )
A. B.
C. D.
12.如图,二次函数y=ax2+bx+c的图象与x轴相交于A、B两点,C(m,﹣3)是图象上的一点,且AC⊥BC,则a的值为( )
A.2 B. C.3 D.
二、填空题(每题4分,共24分)
13.如图三角形ABC的两条高线BD,CE相交于点F,已知∠ABC等于60度,,CF=EF,则三角形ABC的面积为________(用含的代数式表示).
14.如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD上的一动点,连接PC,过点P作PE⊥PC交AB于点E.以CE为直径作⊙O,当点P从点A移动到点D时,对应点O也随之运动,则点O运动的路程长度为_____.
15.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限内的点C分别在双曲线和的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:
①阴影部分的面积为;
②若B点坐标为(0,6),A点坐标为(2,2),则;
③当∠AOC=时,;
④若OABC是菱形,则两双曲线既关于x轴对称, ____________(填写正确结论的序号).
16.已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线_____.
17.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG.则下列结论:
①∠FCG=∠CDG;
②△CEF的面积等于;
③FC平分∠BFG;
④BE2+DF2=EF2;
其中正确的结论是_____.(填写所有正确结论的序号)
18.如果3是数和6的比例中项,那么__________
三、解答题(共78分)
19.(8分)如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是1.
(1)求抛物线的解析式及顶点坐标;
(1)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
20.(8分)已知二次函数y=x2﹣4x+1.
(1)在所给的平面直角坐标系中画出它的图象;
(2)若三点A(x1,y1),B(x2,y2),C(x1.y1)且2<x1<x2<x1,则y1,y2,y1的大小关系为   .
(1)把所画的图象如何平移,可以得到函数y=x2的图象?请写出一种平移方案.
21.(8分)如图,对称轴是的抛物线与轴交于两点,与轴交于点,
求抛物线的函数表达式;
若点是直线下方的抛物线上的动点,求的面积的最大值;
若点在抛物线对称轴左侧的抛物线上运动,过点作铀于点,交直线于点,且,求点的坐标;
在对称轴上是否存在一点,使的周长最小,若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.
22.(10分)如图,是的直径,点在上,平分角交于,过作直线的垂线,交的延长线于,连接.
(1)求证:;
(2)求证:直线是的切线;
(3)若,求的长.
23.(10分)如图,为外接圆的直径,点是线段延长线上一点,点在圆上且满足,连接,,,交于点.
(1)求证:.
(2)过点作,垂足为,,,求证:.
24.(10分)一段路的“拥堵延时指数”计算公式为:拥堵延时指数=,指数越大,道路越堵。高德大数据显示第二季度重庆拥堵延时指数首次排全国榜首。为此,交管部门在A、B两拥堵路段进行调研:A路段平峰时汽车通行平均时速为45千米/时,B路段平峰时汽车通行平均时速为50千米/时,平峰时A路段通行时间是B路段通行时间的倍,且A路段比B路段长1千米.
(1)分别求平峰时A、B两路段的通行时间;
(2)第二季度大数据显示:在高峰时,A路段的拥堵延时指数为2,每分钟有150辆汽车进入该路段;,每分钟有125辆汽车进入该路段。第三季度,交管部门采用了智能红绿灯和潮汐车道的方式整治,拥堵状况有明显改善,在高峰时,A路段拥堵延时指数下降了a%,每分钟进入该路段的车辆增加了;B路段拥堵延时指数下降,每分钟进入该路段的车辆增加了a辆。这样,整治后每分钟分别进入两路段的车辆通过这两路段所用时间总和,比整治前每分钟分别进入这两段路的车辆通过这两路段所用时间总和多小时,求a的值.
25.(12分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
26.在矩形中,,,是射线上的点,连接,将沿直线翻折得.
(1)如图①,点恰好在上,求证:∽;
(2)如图②,点在矩形内,连接,若,求的面积;
(3)若以点、、为顶点的三角形是直角三角形,则的长为   .
参考答案
一、选择题(每题4分,共48分)
1、D
【解析】试题解析:设从2008年起我省森林覆盖率的年平均增长率为x,%(1+x)2=1%.
(1+x)2=1.
故选D.
2、D
【分析】根据题意列出相应的表格,得到所有等可能出现的情况数,进而找出满足题意的情况数,即可求出所求的概率.
【详解】设印有中国国际进口博览会的标志为“”,印有进博会吉祥物“进宝”为,由题列表为
所有的等可能的情况共有种,抽到的两卡片图案不相同的等可能情况共有种,

故选:D.
【点睛】
本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
3、D
【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12cm,CF=CD=9cm,接着根据勾股定理,在Rt△OAE中计算出OE=9cm,在Rt△OCF中计算出OF=12cm,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF-OE.
【详解】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,
∵AB∥CD,
∴OF⊥CD,
∴AE=BE=AB=12cm,CF=DF=CD=9cm,
在Rt△OAE中,∵OA=15cm,AE=12cm,
∴OE=,
在Rt△OCF中,∵OC=15cm,CF=9cm,
∴OF=,
当圆心O在AB与CD之间时,EF=OF+OE=12+9=21cm(如图1);
当圆心O不在AB与CD之间时,EF=OF-OE=12-9=3cm(如图2);
即AB和CD之间的距离为21cm或3cm.
故选:D.
【点睛】
本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.
4、A
【分析】根据题意得到原几何体的主视图,结合主视图选择.
【详解】解:原几何体的主视图是:

视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.
故取走的正方体是①.
故选A.
【点睛】
本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.
5、B
【分析】根据二次根式的性质即可化简.
【详解】=-3
故选B.
【点睛】
此题主要考查二次根式的化简,解题的关键实数的性质.
6、A
【解析】当k>0时,双曲线y=的两支分别位于一、三象限,直线y=kx+k的图象过一、二、三象限;当k<0时,双曲线y=的两支分别位于二、四象限,直线y=kx+k的图象过二、三、四象限;由此可得,只有选项A符合要求,故选A.
点睛:本题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.反比例函数y= 的图象当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.一次函数图象与k、b的关系:①k>0,b>0时,图像经过一二三象限;②k>0,b<0,图像经过一三四象限;③k>0,b=0时,图像经过一三象限,并过原点;④k<0,b>0时,图像经过一二四象限;⑤k<0,b<0时,图像经过二三四象限;⑥k<0,b=0时,图像经过二四象限,并过原点.
7、A
【解析】利用三角形的内角和定理及两组角分别相等证明①正确;根据两组边成比例夹角相等判断②正确;利用③的相似三角形证得∠AEC=∠DBC,又对顶角相等,证得③正确;根据△ACE∽△DCB证得F、E、B、C四点共圆,由此推出△DCF∽△DGC,列比例线段即可证得④正确.
【详解】①正确;在等腰△ACD和等腰△ECB中AC=AD,EC=EB,∠DAC=∠CEB,
∴∠ACD=∠ADC=∠BCE=∠BEC,
∴∠DCG=180-∠ACD-∠BCE=∠BEC,

2022-2023学年河南省郑州市登封市数学九上期末检测试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数31
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小1.64 MB
  • 时间2025-01-28