下载此文档

2022-2023学年湖南省衡阳市第九中学数学八上期末复习检测模拟试题含解析.doc


文档分类:中学教育 | 页数:约19页 举报非法文档有奖
1/19
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/19 下载此文档
文档列表 文档介绍
该【2022-2023学年湖南省衡阳市第九中学数学八上期末复习检测模拟试题含解析 】是由【286919636】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年湖南省衡阳市第九中学数学八上期末复习检测模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,在中,线段AB的中垂线交AB于点D,交AC于点E,AC=14,的周长是24,则BC的长为( )
A.10 B.11 C.14 D.15
2.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为( )
A. B.
C. D.
3.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是( )
A. B. C. D.
4.下列说法错误的是( )
A.一组对边平行且相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的菱形是正方形
D.对角线相等的平行四边形是矩形
5.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是(  )
A.11 B.9 C.7 D.4
6.如图,在长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半在作弧交数轴的正半轴于点M,则点M所表示的数为( )
A. B.-1 C.+1 D.2
7.如果x2+2ax+9是一个完全平方式,则a的值是(  )
A.3 B.﹣3 C.3或﹣3 D.9或﹣9
8.某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为(  )
A. B.
C. D.
9.如图,将一副直角三角板拼在一起得四边形ABCD,∠ACB=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点,若AB= 6cm,点D′到BC的距离是(   )

A. B. C. D.
10.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为(  )
A.15° B.° C.20° D.°
11.下列各式由左边到右边的变形中,属于分解因式的是( )
A. B.
C. D.
12.一次函数上有两点和,则与的大小关系是( )
A. B. C. D.无法比较
二、填空题(每题4分,共24分)
13.已知一直角三角形的木板,三边的平方和为1800,则斜边长为 .
14.计算:_____.
15.若,则=______
16.空调安装在墙上时,一般都采用如图所示的方法固定.这种方法应用的几何原理是:三角形具有______.
17.如图,在平面直角坐标系中,直线与x轴、y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD,则D点坐标是_______;在y轴上有一个动点M,当的周长值最小时,则这个最小值是_______.
18.若某个正数的两个平方根分别是与,则_______.
三、解答题(共78分)
19.(8分)如图,△AOB和△ACD是等边三角形,其中AB⊥x轴于E点,点E坐标为(3,0),点C(5,0).
(1)如图①,求BD的长;
(2)如图②,设BD交x轴于F点,求证:∠OFA=∠DFA.
20.(8分)用消元法解方程组时,两位同学的解法如下:
解法一: 解法二:由②,得, ③
由①-②,得. 把①代入③,得.
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“”.
(2)请选择一种你喜欢的方法,完成解答.
21.(8分)如图,平行四边形的对角线与相交于点,点为的中点,连接并延长交的延长线于点,连接.
(1)求证:;
(2)当,时,请判断四边形的形状,并证明你的结论.
(3)当四边形是正方形时,请判断的形状,并证明你的结论.
22.(10分)如图,在的网格纸中,每个小正方形的边长都为1,动点,分别从点,点同时出发向右移动,点的运动速度为每秒2个单位,点的运动速度为每秒1个单位,当点运动到点时,两个点同时停止运动.
(1)当运动时间为3秒时,请在网格纸图中画出线段,并求其长度.
(2)在动点,运动的过程中,若是以为腰的等腰三角形,求相应的时刻的值.
23.(10分)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.
24.(10分)(1)计算 a-2 b2 ( a2 b-2 )-3
(2)
25.(12分)如图,已知∠A=∠D,AB=DB,点E在AC边上,∠AED=∠CBE,AB和DE相交于点F.
(1)求证:△ABC≌△DBE.
(2)若∠CBE=50°,求∠BED的度数.
26.如图,网格中小正方形的边长为1,已知点A,B,C.
(1)作出△ABC;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)直线AB和直线A1B1交点的坐标是   .
参考答案
一、选择题(每题4分,共48分)
1、A
【分析】根据线段垂直平分线的性质即可得出答案.
【详解】DE是线段AB的中垂线
AE=BE
AC=14
BE+CE=AE+CE=AC=14
的周长是24,即BC+BE+CE=24
BC=24-(BE+CE)=10
故选A.
【点睛】
本题考查了线段垂直平分线的性质定理,熟练掌握性质定理是解题的关键.
2、D
【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.
【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间,减去提前完成时间,可以列出方程:
故选:D.
【点睛】
这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.
3、D
【分析】根据轴对称图形的概念判断即可求解.
【详解】解:A、不是轴对称图形.故选项错误,不合题意;
B、不是轴对称图形.故选项错误,不合题意;
C、不是轴对称图形.故选项错误,不合题意;
D、是轴对称图形.故选项正确,符合题意.
故选:D.
【点睛】
此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.
4、B
【分析】根据正方形,平行四边形,矩形,菱形的判定定理判断即可.
【详解】解:A、一组对边平行且相等的四边形是平行四边形,故正确;
B、对角线互相垂直且平分的四边形是菱形,故错误;
C、对角线相等的菱形是正方形,故正确;
D、对角线相等的平行四边形是矩形,故正确;
故选:B.
【点睛】
本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.
5、A
【解析】分析:根据三角形的三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边可得AC的取值范围,即可求解.
详解:根据三角形的三边关系定理可得:7-4<AC<7+4,
即3<AC<11,
故选A.
点睛:此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
6、B
【分析】先利用勾股定理求出AC,根据AC=AM,求出OM,由此即可解决问题,
【详解】∵四边形ABCD是矩形,
∴∠ABC=90°,
∵AB=3,AD=BC=1,

∴OM=﹣1,
∴点M表示点数为﹣1.
故选B.
【点睛】
此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.
7、C
【解析】完全平方公式:a2±2ab+b2的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是x和3的平方,那么中间项为加上或减去x和3的乘积的2倍.
【详解】解:∵x2+2ax+9是一个完全平方式,
∴2ax=±2×x×3,
则a=3或﹣3,
故选:C.
【点睛】
本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.
8、D
【分析】关键描述语为:“每天增加生产1件”;等量关系为:原计划的工效=实际的工效−1.
【详解】原计划每天能生产零件件,采用新技术后提前两天即(x﹣2)天完成,所以每天能生产件,根据相等关系可列出方程.
故选:D.
【点睛】
本题考查了分式方程的实际应用,找到关键描述语,找到合适的等量关系是解决问题的关键.
9、C
【解析】分析:连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′,于是得到∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.
详解:连接CD′,BD′,过点D′作D′G⊥BC于点G,
∵AC垂直平分线ED′,
∴AE=AD′,CE=CD′,
∵AE=EC,∴AD′=CD′=4,
在△ABD′和△CBD′中,
AB=BCBD′=BD′AD′=CD′,
∴△ABD′≌△CBD′(SSS),
∴∠D′BG=45°,
∴D′G=GB,
设D′G长为xcm,则CG长为(6−x)cm,
在Rt△GD′C中
x2+(6−x)2=(4)2,
解得:x1=3−6,x2=3+6(舍去),
∴点D′到BC边的距离为(3−6)cm.
故选C.
点睛:此题主要考查了折叠的性质,全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.
10、A
【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.
【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,
∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,
即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D=∠A=×30°=15°.
故选A.
【点睛】
点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.
11、C
【分析】因式分解的概念:把一个多项式在一个范围内分解,化为几个整式乘积的形式,这种式子变形叫做因式分解,据此逐一进行分析判断即可.
【详解】A. ,整式乘法,故不符合题意;
B. ,不是因式分解,故不符合题意;
C. ,是因式分解,符合题意;
D. ,故不符合题意,
故选C.
12、B
【分析】由点两点(-1,y1)和(1,y1)的横坐标利用一次函数图象上点的坐标特征,可求出y1、y1的值,比较后即可得出结论.
【详解】∵一次函数y=-1x+3上有两点(1,y1)和(-1019,y1),
∴y1=-1×1+3=1,y1=-1×(-1019)+3=4041,
∴y1<y1.
故选:B.
【点睛】
本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,求出y1、y1的值是解题的关键.
二、填空题(每题4分,共24分)
13、1.
【详解】∵在直角三角形中斜边的平方等于两直角边的平方和,
又∵已知三边的平方和为1800,则斜边的平方为三边平方和的一半,
即斜边的平方为=900,
∴斜边长==1.
故答案是:1.
14、
【解析】根据零指数幂与负指数幂的公式计算即可.
【详解】=1-=.
【点睛】
此题主要考查零指数幂与负指数幂的计算,解题的关键是熟知公式的运用.
15、
【解析】根据0指数幂的意义可得2x+1=0,解方程即可求得答案.
【详解】因为:,所以2x+1=0,所以x=,
故答案为:.
【点睛】

2022-2023学年湖南省衡阳市第九中学数学八上期末复习检测模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数19
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小1.01 MB
  • 时间2025-01-28
最近更新