下载此文档

2022-2023学年甘肃省张掖四中学九年级数学上册期末质量跟踪监视试题含解析.doc


文档分类:中学教育 | 页数:约24页 举报非法文档有奖
1/24
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/24 下载此文档
文档列表 文档介绍
该【2022-2023学年甘肃省张掖四中学九年级数学上册期末质量跟踪监视试题含解析 】是由【286919636】上传分享,文档一共【24】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年甘肃省张掖四中学九年级数学上册期末质量跟踪监视试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC的度数等于(  )
A.50° B.49° C.48° D.47°
2.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )
A.2 B. C. D.
3.下列事件中为必然事件的是( )
A.抛一枚硬币,正面向上 B.打开电视,正在播放广告
C.购买一张彩票,中奖 D.从三个黑球中摸出一个是黑球
4.△ABC中,∠C=90°,内切圆与AB相切于点D,AD=2,BD=3,则△ABC的面积为(  )
A.3 B.6 C.12 D.无法确定
5.两直线a、b对应的函数关系式分别为y=2x和y=2x+3,关于这两直线的位置关系下列
说法正确的是
A.直线a向左平移2个单位得到b B.直线b向上平移3个单位得到a
C.直线a向左平移个单位得到b D.直线a无法平移得到直线b
6.如图,若绕点按逆时针方向旋转后能与重合,则( ).
A. B. C. D.
7.在平面直角坐标系中,的直径为10,若圆心为坐标原点,则点与的位置关系是( )
A.点在上 B.点在外 C.点在内 D.无法确定
8.若点,,在双曲线上,则,,的大小关系是( )
A. B. C. D.
9.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为(  )
A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100
10.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是(  )
A.①②③ B.①②④ C.①③④ D.③④
11.二次函数的图象的顶点坐标是( )
A. B. C. D.
12.已知与各边相切于点,,则的半径( )
A. B. C. D.
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.
14.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.
15.已知二次函数y=2(x-h)2的图象上,当x>3时,y随x的增大而增大,则h的取值范围是 ______ .
16.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.
17.某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,,则树高为_________米.
18.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为

三、解答题(共78分)
19.(8分)矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D.
(1)求点D的坐标;
(2)若抛物线经过A、D两点,试确定此抛物线的解析式;
(3)设(2)中的抛物线的对称轴与直线AD交于点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.
20.(8分)在中,分别是的中点,连接
求证:四边形是矩形;
请用无刻度的直尺在图中作出的平分线(保留作图痕迹,不写作法).
21.(8分)某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数.
22.(10分)已知方程是关于的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程的两个根之和等于两根之积,求的值.
23.(10分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.
(1)如图1,当点D落在线段BC的延长线上时,求∠ADE的度数;
(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,试问∠ADE的度数是否发生变化?如果不变化,请给出理由;如果变化了,请求出∠ADE的度数;
(3)在(2)的条件下,若AB=6,求CF的最大值.
24.(10分)金牛区某学校开展“数学走进生活”的活动课,,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为, m,则这个小组测得大楼AB的高度是多少?(:,,)
25.(12分)如图,四边形ABCD是矩形,E为CD边上一点,且AE、BE分别平分∠DAB、∠ABC.
(1)求证:△ADE≌△BCE;
(2)已知AD=3,求矩形的另一边AB的值.
26.阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形

如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S1.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积为S.
(1)当OM经过点A时(如图①),则S、S1、S1之间的关系为: (用含S1、S1的代数式表示);
(1)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论任然成立吗:请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、A
【解析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.
【详解】连接OC,
由题意得,OB=OC=BC,
∴△OBC是等边三角形,
∴∠BOC=60°,
∵∠AOB=40°,
∴∠AOC=100°,
由圆周角定理得,∠ADC=12∠AOC=50°,
故选:A.
【点睛】
本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
2、D
【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.
【详解】如图连接BE交AD于O,作AH⊥BC于H.
在Rt△ABC中,∵AC=4,AB=3,
∴BC==5,
∵CD=DB,
∴AD=DC=DB=,
∵•BC•AH=•AB•AC,
∴AH=,
∵AE=AB,DE=DB=DC,
∴AD垂直平分线段BE,△BCE是直角三角形,
∵•AD•BO=•BD•AH,
∴OB=,
∴BE=2OB=,
在Rt△BCE中,EC=.
故选D.
点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.
3、D
【分析】根据必然事件指在一定条件下一定发生的事件逐项进行判断即可.
【详解】A,B,C选项中,都是可能发生也可能不发生,是随机事件,不符合题意;
D是必然事件,符合题意.
故选:D.
【点睛】
本题考查必然事件的定义,熟练掌握定义是关键.
4、B
【分析】易证得四边形OECF是正方形,然后由切线长定理可得AC=2+r,BC=3+r,AB=5,根据勾股定理列方程即可求得答案.
【详解】如图,设⊙O分别与边BC、CA相切于点E、F,
连接OE,OF,
∵⊙O分别与边AB、BC、CA相切于点D、E、F,
∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,
∴∠OEC=∠OFC=90°,
∵∠C=90°,
∴四边形OECF是矩形,
∵OE=OF,
∴四边形OECF是正方形,
设EC=FC=r,
∴AC=AF+FC=2+r,BC=BE+EC=3+r,AB=AD+BD=2+3=5,
在Rt△ABC中,=+,
∴=+,
∴,

解得:或(舍去).
∴⊙O的半径r为1,
∴.
故选:B
【点睛】
本题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
5、C
【分析】根据上加下减、左加右减的变换规律解答即可.
【详解】A. 直线a向左平移2个单位得到y=2x+4,故A不正确;
B. 直线b向上平移3个单位得到y=2x+5,故B不正确;
C. 直线a向左平移个单位得到=2x+3,故C正确,D不正确.
故选C
【点睛】
此题考查一次函数与几何变换问题,关键是根据上加下减、左加右减的变换规律分析.
6、D
【分析】根据旋转的性质知,,然后利用三角形内角和定理进行求解.
【详解】∵绕点按逆时针方向旋转后与重合,
∴,,
∴,
故选D.
【点睛】
本题考查了旋转的性质,三角形内角和定理,熟知旋转角的定义与旋转后对应边相等是解题的关键.
7、B
【分析】求出P点到圆心的距离,即OP长,与半径长度5作比较即可作出判断.
【详解】解:∵,
∴OP= ,
∵的直径为10,
∴r=5,
∵OP>5,
∴点P在外.
故选:B.
【点睛】
本题考查点和直线的位置关系,当d>r时点在圆外,当d=r时,点在圆上,当d<r时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.
8、C
【分析】根据题目分别将三个点的横坐标值带入双曲线解析式,即可得出所对应的函数值,再比较大小即可.
【详解】解:∵若点,,在双曲线上,


故选:C.
【点睛】
本题考查的知识点是反比例函数图象上点的坐标特征,本题还可以先分清各点所在象限,再利用各自的象限内反比例函数的增减性解决问题.
9、A
【解析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.
【详解】由题意知,蔬菜产量的年平均增长率为x,
根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,
2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,
即: 80(1+x)2=100,
故选A.
【点睛】
本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.
10、B

2022-2023学年甘肃省张掖四中学九年级数学上册期末质量跟踪监视试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数24
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小1.12 MB
  • 时间2025-01-28
最近更新