下载此文档

2022-2023学年福建省三明市溪一中学九年级数学上册期末调研模拟试题含解析.doc


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
该【2022-2023学年福建省三明市溪一中学九年级数学上册期末调研模拟试题含解析 】是由【286919636】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年福建省三明市溪一中学九年级数学上册期末调研模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,等边的边长为 是边上的中线,点是 边上的中点. 如果点是 上的动点,那么的最 小值为( )
A. B. C. D.
2.两直线a、b对应的函数关系式分别为y=2x和y=2x+3,关于这两直线的位置关系下列
说法正确的是
A.直线a向左平移2个单位得到b B.直线b向上平移3个单位得到a
C.直线a向左平移个单位得到b D.直线a无法平移得到直线b
3.下列图形中,既是轴对称图形又是中心对称图形的是(  )
A. B. C. D.
4.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“治”相对的面上的汉字是( )
A.全 B.面 C.依 D.法
5.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是( )
A.100° B.110° C.120° D.130°
6.当函数是二次函数时,a的取值为(  )
A. B. C. D.
7.如果双曲线y=经过点(3、﹣4),则它也经过点(  )
A.(4、3) B.(﹣3、4) C.(﹣3、﹣4) D.(2、6)
8.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为(  )
A.3m B.m C.m D.4m
9.关于x的一元二次方程x2+mx﹣1=0的根的情况为(  )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.不能确定
10.已知二次函数的图象如图所示,下列结论:①;②;③;④.其中正确的结论是( )
A.①② B.①③ C.①③④ D.①②③
11.下列四个函数中,y的值随着x值的增大而减小的是( )
A.y=2x B.y=x+1 C.y=(x>0) D.y=x2(x>0)
12.如图,分别是的边上的点,且,相交于点,若,则的值为( )
A. B. C. D.
二、填空题(每题4分,共24分)
13.点在抛物线上,则__________.(填“>”,“<”或“=”).
14.如图,在矩形中,对角线与相交于点,,垂足为点,,且,则的长为_______.
15.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为_____.
16.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.
17.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为_____cm.
18.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.
三、解答题(共78分)
19.(8分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.
该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
20.(8分)如图,中,,以为直径作半圆交于点,点为的中点,连接.
(1)求证:是半圆的切线;
(2)若,,求的长.
21.(8分)如图,已知的三个顶点坐标为,,.
(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标 ;
(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标 ;
(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标 .
22.(10分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法画树状图或列表的方法求取出的两个小球上的数字之和为5的概率.
23.(10分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+6
24.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.
(1)求∠ADC的度数;
(2)求证:AE是⊙O的切线.
25.(12分)如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'.
(1)画出△A'B'C',并写出点A',B',C'的坐标;
(2)求经过点B',B,A三点的抛物线对应的函数解析式.
26.已知⊙中,为直径,、分别切⊙于点、.
(1)如图①,若,求的大小;
(2)如图②,过点作∥,交于点,交⊙于点,若,求的大小.
参考答案
一、选择题(每题4分,共48分)
1、D
【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解
【详解】连接BE,与AD交于点G.
∵△ABC是等边三角形,AD是BC边上的中线,
∴AD⊥BC,
∴AD是BC的垂直平分线,
∴点C关于AD的对称点为点B,
∴BE就是EP+CP的最小值.
∴G点就是所求点,即点G与点P重合,
∵等边△ABC的边长为8,E为AC的中点,
∴CE=4,BE⊥AC,
在直角△BEC中,BE=,
∴EP+CP的最小值为,
故选D.
【点睛】
此题考查轴对称-最短路线问题,等边三角形的对称性、三线合一的性质以及勾股定理的运用,熟练掌握,即可解题.
2、C
【分析】根据上加下减、左加右减的变换规律解答即可.
【详解】A. 直线a向左平移2个单位得到y=2x+4,故A不正确;
B. 直线b向上平移3个单位得到y=2x+5,故B不正确;
C. 直线a向左平移个单位得到=2x+3,故C正确,D不正确.
故选C
【点睛】
此题考查一次函数与几何变换问题,关键是根据上加下减、左加右减的变换规律分析.
3、A
【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】解:A、是轴对称图形,也是中心对称图形,故本选项符合题意;
B、不是轴对称图形,不是中心对称图形,故本选项不合题意;
C、是轴对称图形,不是中心对称图形,故本选项不合题意;
D、是轴对称图形,不是中心对称图形,故本选项不合题意.
故答案为A.
【点睛】
本题考查了中心对称图形和轴对称图形的概念,理解这两个概念是解答本题的关键.
4、C
【分析】首先将展开图折叠,即可得出与汉字“治”相对的面上的汉字.
【详解】由题意,得与汉字“治”相对的面上的汉字是“依”,
故答案为C.
【点睛】
此题主要考查对正方体展开图的认识,熟练掌握,即可解题.
5、C
【分析】直接利用圆周角定理求解.
【详解】解:∵∠ABC和∠AOC所对的弧为,∠ABC=60°,
∴∠AOC=2∠ABC=2×60°=120°.
故选:C.
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
6、D
【分析】由函数是二次函数得到a-1≠0即可解题.
【详解】解:∵是二次函数,
∴a-1≠0,
解得:a≠1,
故选你D.
【点睛】
本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.
7、B
【解析】将(3、﹣4)代入即可求得k,由此得到答案.
【详解】解:∵双曲线y=经过点(3、﹣4),
∴k=3×(﹣4)=﹣12=(﹣3)×4,
故选:B.
【点睛】
此题考查反比例函数的性质,比例系数k的值等于图像上点的横纵坐标的乘积.
8、C
【详解】如图,由题意得:AP=3,AB=6,
∴在圆锥侧面展开图中
故小猫经过的最短距离是
故选C.
9、A
【解析】计算出方程的判别式为△=m2+4,可知其大于0,可判断出方程根的情况.
【详解】方程x2+mx﹣1=0的判别式为△=m2+4>0,所以该方程有两个不相等的实数根,
故选:A.
【点睛】
此题主要考查根的判别式,解题的关键是求出方程根的判别式进行判断.
10、C
【分析】由抛物线开口方向得到a>0,由抛物线的对称轴方程得到b=-2a,则可对①②进行判断;利用判别式的意义可对③进行判断;利用平方差公式得到(a+b)2-b2=(a+b-b)(a+b+b),然后把b=-2a代入可对④进行判断.
【详解】∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=-=1,
∴b=-2a<0,所以①正确;
∴b+2a=0,所以②错误;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,所以③正确;
∵(a+b)2-b2=(a+b-b)(a+b+b)=a(a+2b)=a(a-4a)=-3a2<0,
∴(a+b)2<b2,所以④正确.
故选:C.
【点睛】
考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
11、C
【分析】根据一次函数、反比例函数、二次函数的增减性,结合自变量的取值范围,逐一判断.
【详解】解:A、y=2x,正比例函数,k>0,故y随着x增大而增大,错误;
B、y=x+1,一次函数,k>0,故y随着x增大而增大,错误;
C、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,正确;
D、y=x2,当x>0时,图象在对称轴右侧,y随着x的增大而增大,错误.
故选C.
【点睛】
本题考查二次函数的性质;一次函数的性质;反比例函数的性质.
12、C
【分析】根据题意可证明,再利用相似三角形的性质,相似三角形面积的比等于相似比的平方,即可得出对应边的比值.
【详解】解:∵

∴根据相似三角形面积的比等于相似比的平方,可知对应边的比为.
故选:C.
【点睛】
本题考查的知识点是相似三角形的性质,主要有①相似三角形周长的比等于相似比;②相似三角形面积的比等于相似比的平方;③相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
二、填空题(每题4分,共24分)
13、>
【分析】把A、B两点的坐标代入抛物线的解析式,求出的值即得答案.
【详解】解:把A、B两点的坐标代入抛物线的解析式,得:,,∴>.
故答案为:>.
【点睛】
本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于基本题型,掌握比较的方法是解答关键.
14、
【解析】设DE=x,则OE=2x,根据矩形的性质可得OC=OD=3x,在直角三角形OEC中:可求得CE=x,即可求得x=,即DE的长为.
【详解】∵四边形ABCD是矩形
∴OC=AC=BD=OD
设DE=x,则OE=2x, OC=OD=3x,
∵,
∴∠OEC=90°
在直角三角形OEC中
=5
∴x=

2022-2023学年福建省三明市溪一中学九年级数学上册期末调研模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小973 KB
  • 时间2025-01-28