下载此文档

2022-2023学年福建省平和第一中学数学九上期末学业水平测试模拟试题含解析.doc


文档分类:中学教育 | 页数:约22页 举报非法文档有奖
1/22
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/22 下载此文档
文档列表 文档介绍
该【2022-2023学年福建省平和第一中学数学九上期末学业水平测试模拟试题含解析 】是由【286919636】上传分享,文档一共【22】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年福建省平和第一中学数学九上期末学业水平测试模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.若关于x的方程(m﹣1)x2+mx﹣1=0是一元二次方程,则m的取值范围是(  )
A.m≠1 B.m=1 C.m≥1 D.m≠0
2.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(  )
A.(﹣) B.(﹣) C.(﹣) D.(﹣)
3.下列方程中,有两个不相等的实数根的是(  )
A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=0
4.抛物线y=x2+2x+3的对称轴是( )
A.直线x=1 B.直线x=-1
C.直线x=-2 D.直线x=2
5.以下事件为必然事件的是( )
A.掷一枚质地均匀的骰子,向上一面的点数小于6
B.多边形的内角和是
C.二次函数的图象不过原点
D.半径为2的圆的周长是4π
6.如图,点,,均在⊙上,当时,的度数是( )
A. B. C. D.
7.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
8.已知关于x的方程x2﹣3x+2k=0有两个不相等的实数根,则k的取值范围是(  )
A.k> B.k< C.k<﹣ D.k<
9.如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是(  )
A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤4
10.如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是( )

A.点O B.点P C.点M D.点N
二、填空题(每小题3分,共24分)
11.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为 .
12.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是________ cm.
13.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是______.
14.如图:M为反比例函数图象上一点,轴于A,时,______.
15.矩形ABCD中,AB=6,BC=,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
16.观察下列各数:,,,,,……按此规律写出的第个数是______,第个数是______.
17.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为_____.
18.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=-(k>0)图象上的两个点,则y1与y2的大小关系为_____.
三、解答题(共66分)
19.(10分)如图,AC是⊙O的一条直径,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.
(1)求证:AB=BE;
(2)若⊙O的半径R=5,AB=6,求AD的长.
20.(6分)小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.
(1)请你在图中画出小亮站在AB处的影子BE;
(2),,,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?
21.(6分)如图,在正方形中,点在边上,过点作于,且.
(1)若,求正方形的周长;
(2)若,求正方形的面积.
22.(8分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.
(1)求函数的表达式,并直接写出E、F两点的坐标.
(2)求△AEF的面积.
23.(8分)如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线过点A(—1,0),与⊙C相切于点D,求直线的解析式.
24.(8分)如图,已知AD•AC=AB•AE,∠DAE=∠BAC.求证:△DAB∽△EAC.
25.(10分)如图,正方形ABCD,将边BC绕点B逆时针旋转60°,得到线段BE,连接AE,CE.
(1)求∠BAE的度数;
(2)连结BD,延长AE交BD于点F.
①求证:DF=EF;
②直接用等式表示线段AB,CF,EF的数量关系.
26.(10分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.
(1)试用列表或画树形图的方法,求甲获胜的概率;
(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.
【详解】解:由题意得:m﹣1≠0,
解得:m≠1,
故选:A.
【点睛】
本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
2、A
【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,
由题意可得:∠C1NO=∠A1MO=90°,
∠1=∠2=∠1,
则△A1OM∽△OC1N,
∵OA=5,OC=1,
∴OA1=5,A1M=1,
∴OM=4,
∴设NO=1x,则NC1=4x,OC1=1,
则(1x)2+(4x)2=9,
解得:x=±(负数舍去),
则NO=,NC1=,
故点C的对应点C1的坐标为:(-,).
故选A.
【点睛】
此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
3、A
【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.
【详解】解:
在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;
在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;
在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;
在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;
故选:A.
【点睛】
本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.
4、B
【分析】根据抛物线的对称轴公式:计算即可.
【详解】解:抛物线y=x2+2x+3的对称轴是直线
故选B.
【点睛】
此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.
5、D
【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可.
【详解】掷一枚质地均匀的骰子,每一面朝上的概率为,而小于6的情况有5种,因此概率为,不是必然事件,所以A选项错误;
多边形内角和公式为,不是一个定值,而是随着多边形的边数n的变化而变化,所以B选项错误;
二次函数解析式的一般形式为,而当c=1时,二次函数图象经过原点,因此不是必然事件,所以C选项错误;
圆周长公式为,当r=2时,圆的周长为4π,所以D选项正确.
故选D.
【点睛】
本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为1<P<1,不可能事件发生的概率为1.
6、A
【分析】先利用等腰三角形的性质和三角形内角和计算出的度数,然后根据圆周角定理可得到的度数.
【详解】,



故选A.
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
7、C
【详解】试题解析:①∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,
所以①错误;
②∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴在y轴的左侧,
∴a、b同号,
∴b>0,
∵抛物线与y轴交点在x轴上方,
∴c>0,
∴abc>0,
所以②正确;
③∵x=﹣1时,y<0,
即a﹣b+c<0,
∵对称轴为直线x=﹣1,
∴,
∴b=2a,
∴a﹣2a+c<0,即a>c,
所以③正确;
④∵抛物线的对称轴为直线x=﹣1,
∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,
∴4a﹣2b+c>0,
所以④正确.
所以本题正确的有:②③④,三个,
故选C.
8、B
【分析】利用判别式的意义得到△=(﹣3)2﹣4•2k>0,然后解不等式即可.
【详解】解:根据题意得△=(﹣3)2﹣4•2k>0,
解得k<.
故选:B.
【点睛】
此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.
9、A
【分析】如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,由勾股定理可求B'A=5,由三角形中位线定理可求B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,即可求解.
【详解】解:如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,
∵点B(0,3),B'(0,﹣3),点A(4,0),
∴OB=OB'=3,OA=4,
∴,
∵点P是BC的中点,
∴BP=PC,
∵OB=OB',BP=PC,
∴B'C=2OP,
当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,
当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,
∴,
故选:A.
【点睛】
本题考查了三角形中位线定理,勾股定理,平面直角坐标系,解决本题的关键是正确理解题意,熟练掌握三角形中位线定理的相关内容,能够得到线段之间的数量关系.
10、B
【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.

2022-2023学年福建省平和第一中学数学九上期末学业水平测试模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数22
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小1.31 MB
  • 时间2025-01-28
最近更新