下载此文档

2022-2023学年辽宁省沈阳市皇姑区数学九上期末达标测试试题含解析.doc


文档分类:中学教育 | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17 下载此文档
文档列表 文档介绍
该【2022-2023学年辽宁省沈阳市皇姑区数学九上期末达标测试试题含解析 】是由【286919636】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年辽宁省沈阳市皇姑区数学九上期末达标测试试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.已知如图,线段AB=60,AD=13,DE=17,EF=7,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点( )
A.D 点 B.E 点 C.F点 D.D 点或 F点
2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<(  ).
A.1个 B.2个 C.3个 D.4个
3.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )
A. B. C. D.
4.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为( ).
A.2 B.3 C. D.
5.如图,PA是⊙O的切线,OP交⊙O于点B,如果,OB=1,那么BP的长是( )
A.4 B.2 C.1 D.
6.(  )
A.×1012 B.×1010 C.×1011 D.×1011
7.抛物线y=(x﹣4)2﹣5的顶点坐标和开口方向分别是(  )
A.(4,﹣5),开口向上 B.(4,﹣5),开口向下
C.(﹣4,﹣5),开口向上 D.(﹣4,﹣5),开口向下
8.已知,二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是( )
x

-1
0
1
3

y

0
3
4
3

A.(2,0) B.(3,0) C.(4,0) D.(5,0)
9.已知函数是的图像过点,则的值为( )
A.-2 B.3 C.-6 D.6
10.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有(  )
A.6个 B.16个 C.18个 D.24个
11.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,母线长为1.则这个圆锥的侧面积是(  )
A.4π B.1π C.π D.2π
12.计算:x(1﹣)÷的结果是(  )
A. B.x+1 C. D.
二、填空题(每题4分,共24分)
13.在一个不透明的袋子中有1个红球和3个白球,这些球除颜色外都相同,在袋子中再放入个白球后,从袋子中随机摸出
1个球,记录下颜色后放回袋子中并搅匀,经大量试验,,则______.
14.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为_____cm.
15.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.
16.在Rt△ABC中,∠C=90°,tanA=,△ABC的周长为18,则S△ABC=____.
17.形状与抛物线相同,对称轴是直线,且过点的抛物线的解析式是________.
18.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.
三、解答题(共78分)
19.(8分)(1)计算:;
(2)解方程:.
20.(8分)(1)解方程
(2)计算:
21.(8分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.
22.(10分)如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点,且,顶点为.
(1)求二次函数的解析式;
(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求
关于的函数解析式,并写出的取值范围;
(3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.
23.(10分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,.
(1)计划到2020年底,全省5G基站的数量是多少万座?;
(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.
24.(10分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A,B两点,点A的坐标为(﹣1,3),点B的坐标为(3,n).
(1)求这两个函数的表达式;
(2)点P在线段AB上,且S△APO:S△BOP=1:3,求点P的坐标.
25.(12分)某食品商店将甲、乙、丙3种糖果的质量按配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/、20元/、27元/.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.
26.(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB=   °,AB=   .
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】根据题意先计算出BD=60-13=47,AE=BE=30,AF=37,则E点为AB的中点,则计算BD:AB和AF:AB,,则可判断哪一点最接近线段AB的黄金分割点.
【详解】解:∵线段AB=60,AD=13,DE=17,EF=7,
∴BD=60-13=47,AE=BE=30,AF=37,
∴BD:AB=47:60≈,AF:AB=37:60=,
∴点F最接近线段AB的黄金分割点.
故选:C.
【点睛】
本题考查黄金分割的定义,注意掌握把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.
2、C
【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】解:抛物线开口向下,得:a<0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b>0;抛物线交y轴于正半轴,得:c>0.
∴abc<0, ①正确;
2a+b=0,②正确;
由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;
由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;
观察图象得当x=-2时,y<0,
即4a-2b+c<0
∵b=-2a,
∴4a+4a+c<0
即8a+c<0,故⑤正确.
正确的结论有①②⑤,
故选:C
【点睛】
主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
3、B
【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可.
【详解】,故错误;
,故正确;
,故错误;
,故错误;
故选:B.
【点睛】
本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.
4、A
【解析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.
考点:1.矩形及菱形性质;2.解直角三角形.
5、C
【分析】根据题意连接OA由切线定义可知OA垂直AP且OA为半径,以此进行分析求解即可.
【详解】解:连接OA,
已知PA是⊙O的切线,OP交⊙O于点B,可知OA垂直AP且OA为半径,所以三角形OAP为直角三角形,
∵,OB=1,
∴,OA=OB=1,
∴OP=2,BP=OP-OB=2-1=1.
故选C.
【点睛】
本题结合圆的切线定义考查解直角三角形,熟练掌握圆的切线定义以及解直角三角形相关概念是解题关键.
6、D
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】解:=649710000000=×1.
故选:D.
【点睛】
此题主要考查科学记数法,解题的关键是熟知科学记数法的表示方法.
7、A
【解析】根据y=a(x﹣h)2+k,a>0时图象开口向上,a<0时图象开口向下,顶点坐标是(h,k),对称轴是x=h,可得答案.
【详解】由y=(x﹣4)2﹣5,得
开口方向向上,
顶点坐标(4,﹣5).
故选:A.
【点睛】
本题考查了二次函数的性质,利用y=a(x﹣h)2+k,a>0时图象开口向上,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;a<0时图象开口向下,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,顶点坐标是(h,k),对称轴是x=h.
8、C
【分析】根据(0,3)、(3,3)两点求得对称轴,再利用对称性解答即可.
【详解】解:∵抛物线y=ax2+bx+c经过(0,3)、(3,3)两点,
∴对称轴x==;
点(-1,0)关于对称轴对称点为(4,0),
因此它的图象与x轴的另一个交点坐标是(4,0).
故选C.
【点睛】
本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.
9、C
【解析】直接根据反比例函数图象上点的坐标特征求解.
【详解】∵反比例函数的图象经过点(-2,3),
∴k=-2×3=-1.
故选:C.
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
10、B
【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.
【详解】解:∵摸到红色球、,
∴摸到白球的频率为1--=,
故口袋中白色球的个数可能是40×=16个.
故选:B.
【点睛】
此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
11、B
【分析】根据圆锥的侧面积,代入数进行计算即可.
【详解】解:圆锥的侧面积2π×1×1=1π.
故选:B.
【点睛】
本题主要考查了圆锥的计算,掌握圆锥的计算是解题的关键.
12、C
【分析】直接利用分式的性质化简进而得出答案.
【详解】解:原式=
=.
故选:C.
【点睛】
此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
二、填空题(每题4分,共24分)
13、1
【分析】根据用频率估计概率即可求出摸到白球的概率,然后利用概率公式列出方程即可求出x的值.
【详解】解:∵经大量试验,


解得:1
经检验:1是原方程的解.
故答案为:1.
【点睛】
此题考查的是用频率估计概率和根据概率求数量问题,掌握概率公式是解决此题的关键.
14、6π
【分析】直接利用弧长公式计算即可.
【详解】利用弧长公式计算:该莱洛三角形的周长(cm)
故答案为6π
【点睛】
本题考查了弧长公式,熟练掌握弧长公式是解题关键.
15、24米.
【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.
【详解】设建筑物的高为h米,由题意可得:
则4:6=h:36,
解得:h=24(米).
故答案为24米.
【点睛】
本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.
16、
【解析】根据正切函数是对边比邻边,可得a、b的值,根据勾股定理,可得c根据周长公式,可得x的值,根据三角形的面积公式,可得答案.
【详解】由在Rt△ABC中,∠C=90°,tanA=,得
a=5x,b=12x.
由勾股定理,得
c==13x.
由三角形的周长,得
5x+12x+13x=18,
解得x=,
a=3,b=.
S△ABC=ab=×3×=.
故答案为:.
【点睛】
本题考查了解直角三角形,利用正切函数表示出a=5x,b=12x是解题关键.
17、或.
【分析】先从已知入手:由与抛物线形状相同则相同,且经过点,即把代入得

2022-2023学年辽宁省沈阳市皇姑区数学九上期末达标测试试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数17
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小689 KB
  • 时间2025-01-28