下载此文档

2022年云南省姚安县数学八年级第一学期期末综合测试模拟试题含解析.doc


文档分类:中学教育 | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17 下载此文档
文档列表 文档介绍
该【2022年云南省姚安县数学八年级第一学期期末综合测试模拟试题含解析 】是由【286919636】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【2022年云南省姚安县数学八年级第一学期期末综合测试模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图,射线平分角,于点,于点,若,则( )
A. B. C. D.
2.已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=(  )
A.98 B.99 C.100 D.102
3.如果一条直线经过不同的三点,,,那么直线经过( )
A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限
4.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:




平均数(cm)
方差
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
5.某中学篮球队12名队员的年龄情况如下:
年龄(单位:岁)
14
15
16
17
18
人数
1
5
3
2
1
则这个队队员年龄的众数和中位数分别是( )
A.15,16 B.15,15 C.15, D.16,15
6.如图,已知在正方形网格中,每个小方格都是边长为1的正方形, A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为( )
A.7 B.8 C.9 D.10
7.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是(  )
A.① B.② C.①和② D.①②③
8.下列长度的三条线段,哪一组能构成三角形( )
A. B. C. D.
9.若实数、满足,且,则一次函数的图象可能是(  )
A. B. C. D.
10.若k<<k+1(k是整数),则k=(  )
A.6 B.7 C.8 D.9
二、填空题(每小题3分,共24分)
11.如图,在中,有,.点为边的中点.则的取值范围是_______________.
12.已知与成正比例,且时,则当时,的值为______.
13. “宝剑锋从磨砺出,梅花香自苦寒来” 喻义要想拥有珍贵品质或美好才华等是需要不断的努力、修炼、克服一定的困难才能达到的据有关资料显示,,
14.已知平行四边形的面积是,其中一边的长是,则这边上的高是_____cm.
15.如图,长方形两边长,两顶点分别在轴的正半轴和轴的正半轴上运动,则顶点到原点的距离最大值是__________.
16.比较大小:3_____.(填“>”、“<“、“=“)
17.27的立方根为 .
18.计算:__________________.
三、解答题(共66分)
19.(10分)先化简,再求值:2a-,其中a=小刚的解法如下:2a-=2a-=2a-(a-2)=2a-a+2=a+2,当a=时,2a-=+2小刚的解法对吗?若不对,请改正.
20.(6分)如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数是多少?
21.(6分)计算及解方程组:
(1)
(2)
(3)解方程组:
22.(8分)在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?
23.(8分)计算:(1)
(2)
(3)
(4)
24.(8分)若点的坐标为,其中满足不等式组,求点所在的象限.
25.(10分)已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB 、∠ACD,EF∥BC,分别交AC、CF于点H、F求证:EH=HF
26.(10分)直线PA是一次函数y=x+1的图象,直线PB是一次函数y=-2x+2的图象.
(1)求A,B,P三点的坐标;
(2)求四边形PQOB的面积;
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】根据题意可知A、B、O、M四点构成了四边形,且有两个角是直角,直接利用四边形的内角和即可求解.
【详解】解:∵于点,于点,



故选:C.
【点睛】
本题考查的是四边形的内角和,这里要注意到构造的是90°的角即可求解本题.
2、C
【分析】分别根据中位数和方差的定义求出a、b,然后即可求出答案.
【详解】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,
则该组数据的中位数是94,即a=94,
该组数据的平均数为×(92+94+98+91+95)=94,
其方差为×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]
=6,所以b=6,
所以a+b=94+6=100,
故选C.
【点睛】
本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键.
3、A
【分析】一条直线l经过不同的三点,先设直线表达式为:,,把三点代入表达式,用a,b表示k、m ,再判断即可.
【详解】设直线表达式为:,
将,,代入表达式中,得如下式子:

由(1)(2)得:

得,
与(3)相减,
得,
直线为:.
故选:A.
【点睛】
本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.
4、A
【分析】先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】∵,
∴从甲和丙中选择一人参加比赛,
∵,
∴选择甲参赛,
故选:A.
【点睛】
此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
5、C
【分析】由题意直接根据众数和中位数的定义求解可得.
【详解】解:∵这组数据中15出现5次,次数最多,
∴众数为15岁,
中位数是第6、7个数据的平均数,
∴中位数为=,
故选:C.
【点睛】
本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.
6、C
【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.
【详解】解:如图
①点C以点A为标准,AB为底边,符合点C的有5个;
②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.
所以符合条件的点C共有9个.
故选:C.
【点睛】
此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.
7、D
【解析】如图,证明△ABE≌△ACF,得到∠B=∠C;证明△CDE≌△BDF;证明△ADC≌△ADB,得到∠CAD=∠BAD;即可解决问题.
解:如图,连接AD;
在△ABE与△ACF中,
AB=AC,∠EAB=∠FAC,AE=AF,
∴△ABE≌△ACF(SAS);
∴∠B=∠C,
∵AB=AC,AE=AF,
∴BF=CE,
在△CDE和与△BDF中,
∠B=∠C,∠BDF=∠CDE,BF=CE,
∴△CDE≌△BDF(AAS),
∴DC=DB;
在△ADC与△ADB中,
AC=AB,∠C=∠B,DC=DB,
∴△ADC≌△ADB(SAS),
∴∠CAD=∠BAD;
综上所述,①②③均正确,
故选D.
“点睛”该题主要考查了全等三角形的判定及其性质的应用问题:应牢固掌握全等三角形的判定及其性质定理,这是灵活运用解题的基础.
8、B
【解析】由题意直接根据三角形的三边关系进行分析判断即可.
【详解】解:根据三角形任意两边的和大于第三边,得
A、 2+2=4<5,不能组成三角形;
B、3+4=7>5,能组成三角形;
C、2+6=8<10,不能组成三角形;
D、4+5=9,不能组成三角形.
故选:B.
【点睛】
本题考查能够组成三角形三边的条件,用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.
9、A
【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
【详解】解:因为实数k、b满足k+b=0,且k>b,
所以k>0,b<0,
所以它的图象经过一、三、四象限,
故选:A.
【点睛】
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
10、D
【分析】找到90左右两边相邻的两个平方数,即可估算的值.
【详解】本题考查二次根式的估值.∵,∴,∴.
一题多解:可将各个选项依次代入进行验证.如下表:
选项
逐项分析
正误
A

×
B

×
C

×
D


【点睛】
本题考查二次根式的估算,找到被开方数左右两边相邻的两个平方数是关键.
二、填空题(每小题3分,共24分)
11、
【分析】根据题意延长AD至E,使DE=AD,根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,任意两边只差小于第三边求出AE,然后求解即可.
【详解】解:如图,延长AD至E,使DE=AD,
∵AD是△ABC中BC边上的中线,
∴BD=CD,
在△ABD和△ECD中,
∴△ABD≌△ECD(SAS),
∴CE=AB=5,
∵AC=7,
∴5+7=12,7-5=2,
∴2<AE<12,
∴1<AD<1.
故答案为:1<AD<1.
【点睛】
本题考查全等三角形的判定与性质,三角形的三边关系,“遇中线,加倍延”构造出全等三角形是解题的关键.
12、
【分析】先将正比例函数表达式设出来,然后用待定系数法求出表达式,再将y=5代入即可求出x的值.
【详解】∵与成正比例

2022年云南省姚安县数学八年级第一学期期末综合测试模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数17
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小660 KB
  • 时间2025-01-28