下载此文档

2022年吉林省吉大附中数学八年级第一学期期末达标测试试题含解析.doc


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
该【2022年吉林省吉大附中数学八年级第一学期期末达标测试试题含解析 】是由【1875892****】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【2022年吉林省吉大附中数学八年级第一学期期末达标测试试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.已知三角形的两边长分别是3、5,则第三边a的取值范围是( )
A. B.2≤a≤ 8 C. D.
2.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC; 其中正确的结论是( )
A.①② B.①②③ C.①③ D.②③
3.如图,四边形绕点顺时针方向旋转得到四边形,下列说法正确的是( )
A.旋转角是 B.
C.若连接,则 D.四边形和四边形可能不全等
4.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)(  )
A. B. C. D.
5.如图,∠ABC=∠ACB,AD、BD分别平分△ABC的外角∠EAC、内角∠ABC,以下结论:① AD∥BC;②∠ACB=2∠ADB;③ BD⊥AC;④ AC=AD.其中正确的结论有(  )
A.①② B.①②④ C.①②③ D.①③④
6.如图,,是角平分线上一点,,垂足为,点是的中点,且,如果点是射线上一个动点,则的最小值是( )
A.1 B. C.2 D.
7.若三角形两边长分别是4、5,则周长c的范围是(  )
A.1<c<9 B.9<c<14 C.10<c<18 D.无法确定
8.不等式组12x≤12-x<3的解集在数轴上表示为( )
A. B. C.
D.
9.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是(  )
A.10 B.8 C.6 D.4
10.如图,在中,,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,则阴影部分的面积为( )
A.4 B. C. D.8
11.多边形每个外角为45°,则多边形的边数是(  )
A.8 B.7 C.6 D.5
12.下列运算正确的是(  )
A. B. C. D.
二、填空题(每题4分,共24分)
13.用科学计数法表示1.111 1526=_____________.
14.已知,,则的值是________________________.
15.已知:x2+16x﹣k是完全平方式,则k=_____.
16.甲、乙两名男同学练习投掷实心球,每人投了10次,,方差分别为,,成绩比较稳定的是__________(填“甲”或“乙”)
17.如图,点A的坐标(-2,3)点B的坐标是(3,-2),则图中点C的坐标是______.
18.在Rt△ABC中,∠C是直角,∠A=70°,则∠B=___________.
三、解答题(共78分)
19.(8分)已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE
 
(1)求证:△ABE≌△BCD;
(2)求出∠AFB的度数.
20.(8分)如图1,在平面直角坐标系中,点A(0,3),点B(-1,0),点D(2,0),DE⊥x轴且∠BED=∠ABD,延长AE交x轴于点F.
(1)求证:∠BAE=∠BEA;
(2)求点F的坐标;
(3)如图2,若点Q(m,-1)在第四象限,点M在y轴的正半轴上,∠MEQ=∠OAF,设AM-MQ=n,求m与n的数量关系,并证明.
21.(8分)先阅读理解下面的例题,再按要求解答:
例题:解不等式
解:由有理数的乘法法则“两数相乘,同号得正”,
得①或②
解不等式组①得,解不等式组②得,
所以不等式的解集为或.
问题:求不等式的解集.
22.(10分)化简并求值:: ,其中 a=2018.
23.(10分)(1)计算:(11a3﹣6a1+3a)÷3a﹣1;(1)因式分解:﹣3x3+6x1y﹣3xy1.
24.(10分)某体育用品商店一共购进20个篮球和排球,进价和售价如下表所示,全部销售完后共获得利润260元;
篮球
排球
进价(元/个)
80
50
售价(元/个)
95
60
(1)列方程组求解:商店购进篮球和排球各多少个?
(2)销售6个排球的利润与销售几个篮球的利润相等?
25.(12分)现要在△ABC的边AC上确定一点D,使得点D到AB,BC的距离相等.
(1)如图,请你按照要求,在图上确定出点D的位置(尺规作图,不写作法,保留作图痕迹);
(2)若AB=4,BC=6,△ABC的面积为12,求点D到AB的距离.
26.如图是规格为的正方形网格,请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使点A的坐标为,点的坐标为;
(2)在第二象限内的格点上找一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数,画出,则点的坐标是 ,的周长是
(结果保留根号);
(3)作出关于轴对称的.
参考答案
一、选择题(每题4分,共48分)
1、A
【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和.
解答:解:5-3<a<5+3,∴2<a<1.故选A.
点评:已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.
2、B
【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB, ∠CDO=∠ABO;
∠DOC+∠AOC=∠AOB+∠AOC, OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;
所以∠CDA=∠ABC.
故①②③
考点:三角形全等的判定和性质
3、C
【分析】根据旋转的旋转及特点即可依次判断.
【详解】旋转角是或,故A错误;
,故B错误;
若连接,即对应点与旋转中心的连接的线段,故则 ,C正确;
四边形和四边形一定全等,故D错误;
故选C.
【点睛】
此题主要考查旋转的性质,解题的关键是熟知旋转的特点与性质.
4、D
【分析】过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.
【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,
即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.
故选D.
【点睛】
本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.
5、B
【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质进而解答即可.
【详解】解:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
∵BD平分∠ABC,∠ABC=∠ACB,
∵∠ABC+∠ACB+∠BAC=180°,
当∠BAC=∠C时,才有∠ABD+∠BAC=90°,故③错误;
∵∠ADB=∠ABD,
∴AD=AB,
∴AD=AC,故④正确;
故选:B.
【点睛】
本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.
6、C
【分析】根据角平分线的定义可得∠AOP=∠AOB=30°,再根据直角三角形的性质求得PD=OP=1,然后根据角平分线的性质和垂线段最短得到结果.
【详解】∵P是∠AOB角平分线上的一点,∠AOB=60°,
∴∠AOP=∠AOB=30°,
∵PD⊥OA,M是OP的中点,DM=1,
∴OP=1DM=4,
∴PD=OP=1,
∵点C是OB上一个动点,
∴PC的最小值为P到OB距离,
∴PC的最小值=PD=1.
故选:C.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.
7、C
【解析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边,
∴5-4<第三边<5+4,∴10<c<.
8、C
【分析】先求出两个不等式的解集,再求其公共解.
【详解】解:由12x≤2得:x≤2.由2-x<3得:x>-2.所以不等式组的解集为-2<x≤2.
故选C.
【点睛】
此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,
≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
9、C
【分析】延长AP交BC于E,根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC.
【详解】解:延长AP交BC于E,
∵BP平分∠ABC,
∴∠ABP=∠EBP,
∵AP⊥BP,
∴∠APB=∠EPB=90°,
在△ABP和△EBP中,,
∴△ABP≌△EBP(ASA),
∴AP=PE,
∴S△ABP=S△EBP,S△ACP=S△ECP,
∴S△PBC=S△ABC=×12=6.
故选C.
【点睛】
本题考查了全等三角形的判定与性质,三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线构造出全等三角形是解题的关键.
10、A
【分析】先根据勾股定理求出AB,然后根据S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB计算即可.
【详解】解:根据勾股定理可得AB=
∴S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB
=
=
=4
故选A.
【点睛】
此题考查的是求不规则图形的面积,掌握用勾股定理解直角三角形、半圆的面积公式和三角形的面积公式是解决此题的关键.
11、A
【分析】利用多边形外角和除以外角的度数即可
【详解】解:多边形的边数:360÷45=8,
故选A.
【点睛】
此题主要考查了多边形的外角,关键是掌握正多边形每一个外角度数都相等
12、C
【分析】根据合并同类项法则、同底数幂乘除法法则和幂的乘方法则逐项判断即可.
【详解】解:A. ,故错误;
B. ,故错误;
C. ,正确,
D. ,故错误;
故选C.
【点睛】
本题考查了合并同类项,同底数幂乘除法以及幂的乘方,熟练掌握运算法则是解题关键.
二、填空题(每题4分,共24分)
13、
【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.

2022年吉林省吉大附中数学八年级第一学期期末达标测试试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1875892****
  • 文件大小840 KB
  • 时间2025-01-28