下载此文档

2022年浙江杭州经济开发区六校联考数学八上期末质量跟踪监视模拟试题含解析.doc


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
该【2022年浙江杭州经济开发区六校联考数学八上期末质量跟踪监视模拟试题含解析 】是由【rongfunian】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【2022年浙江杭州经济开发区六校联考数学八上期末质量跟踪监视模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.方程的公共解是(  )
A. B. C. D.
2.如图,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正确结论的个数是(  )
A.1个 B.2个 C.3个 D.4个
3.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点出发,沿长方体表面到点处吃食物,那么它爬行最短路程是( )
A. B. C. D.
4.如图所示:已知两个正方形的面积,则字母A所代表的正方形的面积为( )
A.4 B.8 C.64 D.16
5.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
A.①②③ B.①③⑤ C.②③④ D.②④⑤
6.下列各组数中,是方程2x+y=7的解的是(  )
A. B. C. D.
7.如图一个五边形木架,要保证它不变形,至少要再钉上几根木条(  )
A.4 B.3 C.2 D.1
8.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有
A.3种 B.4种 C.5种 D.6种
9.下列命题中,是假命题的是( )
A.对顶角相等 B.同位角相等
C.同角的余角相等 D.全等三角形的面积相等
10.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD ; ②CN=CM; ③MN∥AB; ④∠CDB=∠NBE. 其中正确结论的个数是( )
A.4 B.3 C.2 D.1
11.当为( )时,分式的值为零.
A.0 B.1 C.-1 D.2
12.如图,在长方形中,点,点分别为和上任意一点,点和点关于对称,是的平分线,若,则的度数是( )
A. B. C. D.
二、填空题(每题4分,共24分)
13.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=_____.
14.分解因式________________.
15.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________.
16.式子在实数范围内有意义,则 x 的取值范围是_______ .
17.已知是方程3x﹣my=7的一个解,则m= .
18.已知是完全平方式,则__________.
三、解答题(共78分)
19.(8分)2019年10月,某市高质量通过全国文明城市测评,该成绩的取得得益于领导高度重视(A)、整改措施有效(B)、市民积极参与(C)、市民文明素质(D).某数学兴趣小组随机走访了部分市民,对这四项认可度进行调查(只选填最认可的一项),并将调查结果制作了如下两幅不完整的统计图.
(1)请补全D项的条形图;
(2)已知B、C两项条形图的高度之比为3:1.
①选B、C两项的人数各为多少个?
②求α的度数,

20.(8分)(1)求值:;
(2)解方程:.
21.(8分)如图,在Rt△ABC中,∠ACB=90°,两直角边AC=8cm,BC=6cm.
(1)作∠BAC的平分线AD交BC于点D;(尺规作图,不写作法,保留作图痕迹)
(2)计算△ABD的面积.
22.(10分)如图,已知点,,,在一条直线上,且,,,求证:.
23.(10分)某班级组织学生参加研学活动,计划租用一辆客车,租金为1000元,,实际参加的人数是原计划的,结果每名学生比原计划多付5元车费,实际有多少名学生参加了研学活动?
24.(10分)某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:
甲:8,8,7,8,9;乙:5,9,7,10,9;
甲乙两同学引体向上的平均数、众数、中位数、方差如下:
平均数
众数
中位数
方差

8
b
8


a
9
c

根据以上信息,回答下列问题:
(1)表格是a=  ,b=  ,c=  .(填数值)
(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是  .班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是  ;
(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数   ,中位数  ,方差  .(填“变大”、“变小”或“不变”)
25.(12分)开展“创卫”活动,某校倡议学生利用双休日在“人民公园”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)求抽查的学生劳动时间的众数、中位数;
(3)电视台要从参加义务劳动的学生中随机抽取1名同学采访,抽到时参加义务劳动的时间为2小时的同学概率是多少?
26.计算:3a2·(-b)-8ab(b-a)
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】此题要求公共解,实质上是解二元一次方程组.
【详解】把方程y=1﹣x代入1x+2y=5,得1x+2(1﹣x)=5,
解得:x=1.
把x=1代入方程y=1﹣x,得y=﹣2.
故选C.
【点睛】
这类题目的解题关键是掌握方程组解法,此题运用了代入消元法.
2、C
【分析】①在AE取点F,使EF=BE.利用已知条件AB=AD+2BE,可得AD=AF,进而证出2AE=AB+AD;
②在AB上取点F,使BE=EF,连接CF.先由SAS证明△ACD≌△ACF,得出∠ADC=∠AFC;再根据线段垂直平分线、等腰三角形的性质得出∠CFB=∠B;然后由邻补角定义及四边形的内角和定理得出∠DAB+∠DCB=180°;
③根据全等三角形的对应边相等得出CD=CF,根据线段垂直平分线的性质得出CF=CB,从而CD=CB;
④由于△CEF≌△CEB,△ACD≌△ACF,根据全等三角形的面积相等易证S△ACE-S△BCE=S△ADC.
【详解】解:①在AE取点F,使EF=BE,
∵AB=AD+2BE=AF+EF+BE,EF=BE,
∴AB=AD+2BE=AF+2BE,
∴AD=AF,
∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,
∴AE=(AB+AD),故①正确;
②在AB上取点F,使BE=EF,连接CF.
在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,
∴△ACD≌△ACF,
∴∠ADC=∠AFC.
∵CE垂直平分BF,
∴CF=CB,
∴∠CFB=∠B.
又∵∠AFC+∠CFB=180°,
∴∠ADC+∠B=180°,
∴∠DAB+∠DCB=360-(∠ADC+∠B)=180°,故②正确;
③由②知,△ACD≌△ACF,∴CD=CF,
又∵CF=CB,
∴CD=CB,故③正确;
④易证△CEF≌△CEB,
所以S△ACE-S△BCE=S△ACE-S△FCE=S△ACF,
又∵△ACD≌△ACF,
∴S△ACF=S△ADC,
∴S△ACE-S△BCE=S△ADC,故④错误;
即正确的有3个,
故选C.
【点睛】
本题考查了角平分线性质,全等三角形的性质和判定,等腰三角形的性质,四边形的内角和定理,邻补角定义等知识点的应用,正确作辅助线是解此题的关键,综合性比较强,难度适中.
3、B
【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.
【详解】如图:

根据题意,如上图所示,最短路径有以下三种情况:
(1)AB2=(2+3)2+42=41;
(2)AB2=32+(4+2)2=45;
(3)AB2=22+(4+3)2=53;
综上所述,最短路径应为(1)所示,所以AB2=41,即AB=
故选:B
【点睛】
此题考查的是勾股定理的应用,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.
4、C
【解析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.
【详解】∵正方形PQED的面积等于1,∴PQ2=1.
∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:
PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣1=2,则正方形QMNR的面积为2.
故选C.
【点睛】
本题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是解答本题的关键.
5、D
【分析】根据实数的运算法则即可一一判断求解.
【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
故选D.
6、C
【解析】把各项中x与y的值代入方程检验即可.
【详解】解:把x=1,y=5代入方程左边得:2+5=7,右边=7,
∴左边=右边,
则是方程2x+y=7的解.
故选:C.
【点睛】
此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
7、C
【分析】根据三角形具有稳定性,钉上木条后把五边形分成三角形即可.
【详解】如图,要保证它不变形,至少还要再钉上2根木条.
故选C.
【点睛】
本题考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.
8、D
【分析】设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤1.
【详解】解:∵x≥3,y≥3,
∴当x=3,y=3时,7×3+5×3=36<5;
当x=3,y=4时,7×3+5×4=41<1;
当x=3,y=5时,7×3+5×5=46<1;
当x=3,y=6时,7×3+5×6=51>1舍去;
当x=4,y=3时,7×4+5×3=43<1;
当x=4,y=4时,7×4+5×4=4<1;
当x=4,y=5时,7×4+5×5=53>1舍去;
当x=5,y=3时,7×5+5×3=1=1.
综上所述,共有6种购买方案.
故选D.
9、B
【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.
【详解】,故该选项不合题意,
,同位角相等,故该选项是假命题,符合题意,
,故该选项不合题意,
,故该选项不合题意.
故选:B.
【点睛】
本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
10、A
【分析】根据题目中的已知信息,判定出△ACE≌△DCB,即可证明①正确;判定△ACM≌△DCN,即可证明②正确;证明∠NMC=∠ACD,即可证明③正确;分别判断在△DCN和△BNE各个角度之间之间的关系,即可证明④正确.
【详解】∵△ACD和△BCE是等边三角形
∴∠ACD=∠BCE=60°,AC=DC,EC=BC
∴∠ACD+∠DCE=∠DCE+∠ECB
即∠ACE=∠DCB
∴△ACE≌△DCB(SAS)
∴AE=BD,故①正确;
∴∠EAC=∠NDC
∵∠ACD=∠BCE=60°
∴∠DCE=60°
∴∠ACD=∠MCN=60°
∵AC=DC
∴△ACM≌△DCN(ASA)
∴CM=CN,故②正确;
又∠MCN=180°-∠MCA-∠NCB=180°-60°-60°=60°
∴△CMN是等边三角形
∴∠NMC=∠ACD=60°

2022年浙江杭州经济开发区六校联考数学八上期末质量跟踪监视模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人rongfunian
  • 文件大小920 KB
  • 时间2025-01-28
最近更新