下载此文档

2022年湖南省长沙市雅礼教育集团八年级数学第一学期期末联考模拟试题含解析.doc


文档分类:中学教育 | 页数:约20页 举报非法文档有奖
1/20
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/20 下载此文档
文档列表 文档介绍
该【2022年湖南省长沙市雅礼教育集团八年级数学第一学期期末联考模拟试题含解析 】是由【xinyala】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【2022年湖南省长沙市雅礼教育集团八年级数学第一学期期末联考模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是(  )
A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF
2.如图,、是的外角角平分线,若,则的大小为( )
A. B. C. D.
3.如图,将一副直角三角板拼在一起得四边形ABCD,∠ACB=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点,若AB= 6cm,点D′到BC的距离是(   )

A. B. C. D.
4.若等腰三角形的两边长分别4和6,则它的周长是( )
A.14 B.15 C.16 D.14或16
5.如图,在中,,平分,,则( )
A. B. C. D.
6.化简的结果为( )
A.3 B. C. D.9
7.下列运算正确的是( )
A. B.3﹣=3
C. D.
8.化简12的结果是( )
A.43 B.23 C.32 D.26
9.如图,在中,AB、AC的垂直平分线分别交BC于点E、F,若,则为  
A. B. C. D.
10.将下列长度的三根木棒首尾顺次连接,能组成三角形的是( )
A.1,2,4 B.8,6,4 C.12,6,5 D.3,3,6
二、填空题(每小题3分,共24分)
11.一次函数与的图象如图,则下列结论:①;②;③当时,,正确的是__________.
12.定义表示不大于的最大整数、,例如,,,,,,则满足的非零实数值为_______.
13.若代数式x2+kx+25是一个完全平方式,则k=_____.
14.已知a1,则a2+2a+2的值是_____.
15.若等腰三角形的两边长为10,6,则周长为______.
16.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,,用科学记数法表示是_______。
17.若a+b=3,则代数式(-a)÷=_____________.
18.如图,在平面直角坐标系中,长方形的边,分别在轴,轴上,点在边上,将该长方形沿折叠,点恰好落在边上的点处,若,,则所在直线的表达式为__________.
三、解答题(共66分)
19.(10分)约分:
(1)
(2)
20.(6分)(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.
(2)若,,求的值.
21.(6分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由;
(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由;
(3)小亮将直线MN绕点C旋转到图2的位置,发现DE、AD、BE之间存在着一个新的数量关系,请直接写出这一数量关系。
22.(8分)已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.
(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;
(2)如图2,点E为BC延长长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;
(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.
23.(8分)如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.
(1)画出关于轴对称的图形;
(2)已知和关于轴成轴对称,写出顶点,,的坐标.
24.(8分)如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.
(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
25.(10分)如图,点D,E分别在AB,AC上,DE∥BC,F是AD上一点,:
(1)∠EGH>∠ADE;
(2)∠EGH=∠ADE+∠A+∠AEF.
26.(10分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.
例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.
(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.
求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;
(3)在(2)所得“吉祥数”中,求F(t)的最大值.
参考答案
一、选择题(每小题3分,共30分)
1、A
【解析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.
【详解】解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF
∴Rt△ABC≌Rt△DEF
∴BC=EF,AC=DF
所以只有选项A是错误的,故选A.
【点睛】
本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.
2、B
【分析】首先根据三角形内角和与∠P得出∠PBC+∠PCB,然后根据角平分线的性质得出∠ABC和∠ACB的外角和,进而得出∠ABC+∠ACB,即可得解.
【详解】∵
∴∠PBC+∠PCB=180°-∠P=180°-60°=120°
∵、是的外角角平分线
∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°
∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°
∴∠A=60°
故选:B.
【点睛】
此题主要考查角平分线以及三角形内角和的运用,熟练掌握,即可解题.
3、C
【解析】分析:连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′,于是得到∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.
详解:连接CD′,BD′,过点D′作D′G⊥BC于点G,
∵AC垂直平分线ED′,
∴AE=AD′,CE=CD′,
∵AE=EC,∴AD′=CD′=4,
在△ABD′和△CBD′中,
AB=BCBD′=BD′AD′=CD′,
∴△ABD′≌△CBD′(SSS),
∴∠D′BG=45°,
∴D′G=GB,
设D′G长为xcm,则CG长为(6−x)cm,
在Rt△GD′C中
x2+(6−x)2=(4)2,
解得:x1=3−6,x2=3+6(舍去),
∴点D′到BC边的距离为(3−6)cm.
故选C.
点睛:此题主要考查了折叠的性质,全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.
4、D
【解析】根据题意,
①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;
②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.
故选D.
5、C
【分析】先根据角平分线的性质,得出DE=DC,再根据DC=1,即可得到DE=1.
【详解】解:∵∠C=90°,AD平分∠BAC,DE⊥AB于E,
∴DE=DC,
∵DC=1,
∴DE=1,
故选:C.
【点睛】
本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.
6、B
【解析】根据二次根式的性质进行化简.
【详解】解:
故选:B.
【点睛】
本题考查二次根式的化简,掌握二次根式的性质,正确化简是解题关键.
7、C
【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.
【详解】,不能合并,故该选项计算错误,
B.=2,故该选项计算错误,
C.==,故该选项计算正确,
D.==,故该选项计算错误.
故选:C.
【点睛】
本题考查二次根式得运算,熟练掌握运算法则是解题关键.
8、B
【解析】试题解析:12=4×3=4×3=23.
故选B.
考点:二次根式的化简.
9、D
【分析】根据三角形内角和定理求出∠C+∠B=68°,根据线段垂直平分线的性质得到EC=EA,FB=FA,根据等腰三角形的性质得到∠EAC=∠C,∠FAB=∠B,计算即可.
【详解】解:,

、FH分别为AC、AB的垂直平分线,
,,
,,


故选D.
【点睛】
此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
10、B
【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.
【详解】A、1+2=3<4,不能组成三角形,故此选项错误;
B、6+4>8,能组成三角形,故此选项正确;
C、6+5<12,不能组成三角形,故此选项错误;
D、3+3=6,不能组成三角形,故此选项错误;
故选B.
【点睛】
此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.
二、填空题(每小题3分,共24分)
11、①
【分析】根据一次函数的图象和性质即可判断出k和a的取值范围,再根据图象的交点横坐标结合函数图象即可得到③的结论.
【详解】解:①y1=kx+b的图象可知y随x的增大而减小,所以k<0,故此选项正确;
②y2=x+a的图象与y轴相交于负半轴,则a<0,故此选项错误;
③由于两函数图象交点横坐标为3,则当x<3时,y1>y2,故此选项错误.
故答案为:①.
【点睛】
本题考查一次函数的图象和性质,一次函数与不等式的关系.对于一次函数y=kx+b,k决定函数的增减性,b决定函数与y轴的交点.两个函数比较大小,谁的图象在上面谁的值就大.
12、
【分析】设x=n+a,其中n为整数,0≤a<1,则[x]=n,{x}=x-[x]=a,由此可得出2a=n,进而得出a=n,结合a的取值范围即可得出n的取值范围,结合n为整数即可得出n的值,将n的值代入a=n中可求出a的值,再根据x=n+a即可得出结论.
【详解】设,其中为整数,,则,,
原方程化为:,

,即,

为整数,
、.

2022年湖南省长沙市雅礼教育集团八年级数学第一学期期末联考模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数20
  • 收藏数0 收藏
  • 顶次数0
  • 上传人xinyala
  • 文件大小934 KB
  • 时间2025-01-28