本论文提出了一种融合人耳听觉特性与SAE模型的船舶辐射噪声分类方法。实验结果证明该方法能够有效提高船舶辐射噪声的分类准确性和鉴别能力。未来的工作可以进一步改进人耳听觉特性与SAE模型的融合方法,并将该方法应用到更复杂的环境中。 参考文献: [1] Wang, L., & Zhang, C. (2017). Ship-radiated noise recognition based on MFCC and an improved BP neural network. Journal of Marine Science and Technology, 25(3), 413-419. [2] Han, Y., & Lu, Q. (2018). Sparse coding based acoustic modeling for short-duration speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(3), 514-525. [3] Wang, K., et al. (2020). Deep Learning in Natural Language Processing. IEEE Intelligent Systems, 35(3), 1-1.