下载此文档

2022-2023学年湖北省恩施州利川市数学九年级上册期末达标检测试题含解析.doc


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
该【2022-2023学年湖北省恩施州利川市数学九年级上册期末达标检测试题含解析 】是由【286919636】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年湖北省恩施州利川市数学九年级上册期末达标检测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列各选项的事件中,发生的可能性大小相等的是(  )
A.小明去某路口,碰到红灯,黄灯和绿灯
B.掷一枚图钉,落地后钉尖“朝上”和“朝下”
C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上
D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”
2.点A(﹣3,2)关于x轴的对称点A′的坐标为( )
A.(3,2) B.(3,﹣2) C.(﹣3,2) D.(﹣3,﹣2)
3.某水库大坝的横断面是梯形,坝内一斜坡的坡度,则这个斜坡坡角为( )
A.30° B.45° C.60° D.90°
4.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面.则这个圆锥的底面圆的半径为( )
A. B.1 C. D.2
5.已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是
A. B. C. D.
6.下列函数中,一定是二次函数的是( )
A. B. C. D.
7.若点,,在双曲线上,则,,的大小关系是( )
A. B. C. D.
8.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是(  )
A.600(1+x)=950 B.600(1+2x)=950
C.600(1+x)2=950 D.950(1﹣x)2=600
9.三角形的两边长分别为3和2,第三边的长是方程的一个根,则这个三角形的周长是( )
A.10 B.8或7 C.7 D.8
10.如图,已知抛物线y=x2+px+q的对称轴为直线x=﹣2,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为(  ).
A.(0,﹣2) B.(0,﹣) C.(0,﹣) D.(0,﹣)
二、填空题(每小题3分,共24分)
11.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.
12.若两个相似三角形的周长比是,则对应中线的比是________.
13.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠C=40°,OA=9,则BD的长为 .(结果保留π)
14.已知向量为单位向量,如果向量与向量方向相反,且长度为3,那么向量=________.(用单位向量表示)
15.如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC,若sinC=,BC=12,则AD的长_____.
16.半径为4 cm,圆心角为60°的扇形的面积为 cm1.
17.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为1.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括1).
18.若方程有两个不相等的实数根,则的值等于__________________.
三、解答题(共66分)
19.(10分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.
(1)试用列表或画树形图的方法,求甲获胜的概率;
(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.
20.(6分)已知是二次函数,且函数图象有最高点.
(1)求的值;
(2)当为何值时,随的增大而减少.
21.(6分)某市某幼儿园“六一”期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏.主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.
(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)?
(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)
22.(8分)如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y2=k2x+b.
(1)求反比例函数和直线EF的解析式;
(温馨提示:平面上有任意两点M(x1,y1)、N(x2,y2),它们连线的中点P的坐标为( ))(2)求△OEF的面积;
(3)请结合图象直接写出不等式k2x -b﹣>0的解集.
23.(8分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份).
(1)甲顾客消费80元,是否可获得转动转盘的机会?
(2)乙顾客消费150元,获得打折待遇的概率是多少?
(3)他获得九折,八折,七折,五折待遇的概率分别是多少?
24.(8分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.
25.(10分)已知为的外接圆,点是的内心,的延长线交于点,交于点.
(1)如图1,求证:.
(2)如图2,为的直径.若,求的长.
26.(10分)爸爸有一张“山西大剧院”的演出门票,计划通过“掷筹码”的游戏将门票奖励给哥哥或者弟弟,游戏规则如下:准备两个质量均匀的筹码,在第一个筹码的一面画上“×”,另一面画上“○”;在第二个筹码的一面画上“○”,另一面画上“△”.随机掷出两个筹码,当筹码落地后,若朝上的一面都是“○”,则哥哥获得门票;否则,弟弟获得门票.你认为这个游戏公平吗?说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】根据概率公式逐一判断即可.
【详解】A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,
∴它们发生的概率不相同,
∴选项A不正确;
B、∵图钉上下不一样,
∴钉尖朝上的概率和钉尖着地的概率不相同,
∴选项B不正确;
C、∵“直角三角形”三边的长度不相同,
∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,
∴选项C不正确;
D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,
∴选项D正确.
故选:D.
【点睛】
此题考查的是概率问题,掌握根据概率公式分析概率的大小是解决此题的关键.
2、D
【分析】直接利用关于x轴对称点的性质得出符合题意的答案.
【详解】解:点A(﹣3,2)关于x轴的对称点A′的坐标为:(﹣3,﹣2),
故选:D.
【点睛】
本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点:横坐标不变,纵坐标互为相反数.
3、A
【分析】根据坡度可以求得该坡角的正切值,根据正切值即可求得坡角的角度.
【详解】∵坡度为,
∴,
∵,且α为锐角,
∴.
故选:A.
【点睛】
本题考查了坡度的定义,考查了特殊角的三角函数值,考查了三角函数值在直角三角形中的应用.
4、A
【分析】根据扇形的弧长公式求出弧长,根据圆锥的底面周长等于它的侧面展开图的弧长求出半径.
【详解】解:设圆锥底面的半径为r,
扇形的弧长为:,
∵圆锥的底面周长等于它的侧面展开图的弧长,
∴根据题意得2πr=,
解得:r=,
故选A.
【点睛】
本题考查了圆锥的计算,掌握弧长公式、周长公式和圆锥与扇形的对应关系是解题的关键.
5、D
【详解】根据题意有:xy=24;且根据x,y实际意义x、y应大于0,其图象在第一象限.故选D.
6、A
【分析】根据二次函数的定义逐个判断即可.
【详解】A、是二次函数,故本选项符合题意;
B、当a=0时,函数不是二次函数,故本选项不符合题意;
C、不是二次函数,故本选项不符合题意;
D、不是二次函数,故本选项不符合题意;
故选:A.
【点睛】
此题考查二次函数的定义,能熟记二次函数的定义的内容是解题的关键.
7、C
【分析】根据题目分别将三个点的横坐标值带入双曲线解析式,即可得出所对应的函数值,再比较大小即可.
【详解】解:∵若点,,在双曲线上,


故选:C.
【点睛】
本题考查的知识点是反比例函数图象上点的坐标特征,本题还可以先分清各点所在象限,再利用各自的象限内反比例函数的增减性解决问题.
8、C
【分析】设快递量平均每年增长率为,根据我国2018年及2020年的快递业务量,即可得出关于的一元二次方程,此题得解.
【详解】设快递量平均每年增长率为x,
依题意,得:600(1+x)2=1.
故选:C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
9、B
【分析】因式分解法解方程求得x的值,再根据三角形的三边关系判断能否构成三角形,最后求出周长即可.
【详解】解:∵,
∴(x-2)(x-3)=0,
∴x-2=0或x-3=0,
解得:x=2或x=3,
当x=2时,三角形的三边2+2>3,可以构成三角形,周长为3+2+2=7;
当x=3时,三角形的三边满足3+2>3,可以构成三角形,周长为3+2+3=8,
故选:B.
【点睛】
本题主要考查解一元二次方程的能力和三角形三边的关系,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
10、B
【解析】根据线段垂直平分线的性质,可得N,′根据待定系数法,可得函数解析式,根据配方法,可得M点坐标,根据两点之间线段最短,可得MN′,根据自变量与函数值的对应关系,可得P点坐标.
【详解】如图,
作N点关于y轴的对称点N′,连接MN′交y轴于P点,
将N点坐标代入抛物线,并联立对称轴,得,
解得,
y=x2+4x+2=(x+2)2-2,
M(-2,-2),
N点关于y轴的对称点N′(1,-1),
设MN′的解析式为y=kx+b,
将M、N′代入函数解析式,得,
解得,
MN′的解析式为y=x-,
当x=0时,y=-,即P(0,-),
故选:B.
【点睛】
本题考查了二次函数的性质,利用了线段垂直平分线的性质,两点之间线段最短得出P点的坐标是解题关键.
二、填空题(每小题3分,共24分)
11、
【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.
【详解】解:因为蓝色区域的圆心角的度数为120°,
所以指针落在红色区域内的概率是=,
故答案为.
【点睛】
本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.
12、4:9
【分析】相似三角形的面积之比等于相似比的平方.
【详解】解:两个相似三角形的周长比是,
∴两个相似三角形的相似比是,
∴两个相似三角形对应中线的比是,
故答案为.
13、132π,
【解析】试题解析:∵AC是⊙O的切线,
∴∠OAC=90°,
∵∠C=40°,
∴∠AOD=50°,
∴AD的长为50π×9180=5π2,
∴BD的长为π×9-52π=132π,
考点:;.
14、
【解析】因为向量为单位向量,向量与向量方向相反,且长度为3,所以=,
故答案为:.
15、1
【分析】在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=13x,利用勾股定理计算出

2022-2023学年湖北省恩施州利川市数学九年级上册期末达标检测试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小879 KB
  • 时间2025-01-29
最近更新