下载此文档

2022-2023学年辽宁省丹东市数学九年级第一学期期末学业质量监测试题含解析.doc


文档分类:中学教育 | 页数:约21页 举报非法文档有奖
1/21
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/21 下载此文档
文档列表 文档介绍
该【2022-2023学年辽宁省丹东市数学九年级第一学期期末学业质量监测试题含解析 】是由【286919636】上传分享,文档一共【21】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年辽宁省丹东市数学九年级第一学期期末学业质量监测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )
A.5,6,-8 B.5,-6,-8 C.5,-6,8 D.6,5,-8
2.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=(  )
A. B. C. D.
3.边长为2的正六边形的面积为(  )
A.6 B.6 C.6 D.
4.如图,在△ABC中,AD=AC,延长CD至B,使BD=CD,DE⊥BC交AB于点E,EC交AD于点F.下列四个结论:①EB=EC;②BC=2AD;③△ABC∽△FCD;④若AC=6,则DF=1.其中正确的个数有()
A.1 B.2 C.1 D.4
5.下列方程中是关于的一元二次方程的是( )
A. B. C., D.
6.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
7.二次函数与坐标轴的交点个数是(  )
A.0个 B.1个 C.2个 D.3个
8.已知关于x的一元二次方程有两个相等的实数根,则a的值是( )
A.4 B.﹣4 C.1 D.﹣1
9.点P(3,5)关于原点对称的点的坐标是(  )
A.(﹣3,5) B.(3,﹣5) C.(5,3) D.(﹣3,﹣5)
10.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0
11. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为的直径,弦,垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )
A.12寸 B.13寸 C.24寸 D.26寸
12.已知抛物线的对称轴为直线,与x轴的一个交点坐标,其部分图象如图所示,下列结论:抛物线过原点;;;抛物线的顶点坐标为;当时,y随x增大而增大其中结论正确的是
A. B. C. D.
二、填空题(每题4分,共24分)
13.若一组数据1,2,x,4的平均数是2,则这组数据的方差为_____.
14.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=_________.
15.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为___________________
16.如图,正方形ABCO与正方形ADEF的顶点B、E在反比例函数 的图象上,点A、C、D在坐标轴上,则点E的坐标是_____.
17.正五边形的中心角的度数是_____.
18.一家鞋店对上一周某品牌女鞋的销量统计如下:
尺码(厘米)
22

23

24

25
销量(双)
1
2
5
11
7
3
1
该店决定本周进货时,,影响鞋店决策的统计量是___________ .
三、解答题(共78分)
19.(8分)元元同学在数学课上遇到这样一个问题:
如图1,在平面直角坐标系中,⊙经过坐标原点,并与两坐标轴分别交于、两点,点的坐标为,点在⊙上,且,求⊙的半径.
图1 图2
元元的做法如下,请你帮忙补全解题过程.
解:如图2,连接
,
是⊙的直径. (依据是 )

(依据是 )
.即⊙的半径为 .
20.(8分)如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动,当点不与点、重合时,过点作于点,连接,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为.
(1)①的长为______;
②的长用含的代数式表示为______;
(2)当为矩形时,求的值;
(3)当与重叠部分图形为四边形时,求与之间的函数关系式.
21.(8分)甲、乙两人进行摸牌游戏现有三张形状大小完全相同的牌,正面分别标有数字2,3,1.将三张牌背面朝上,洗匀后放在桌子上,甲从中随机抽取一张牌,记录数字后放回洗匀,乙再从中随机抽取一张.
(1)甲从中随机抽取一张牌,抽取的数字为奇数的概率为   ;
(2)请用列表法或画树状图的方法,求两人抽取的数字相同的概率.
22.(10分)某高速公路建设中,需要确定隧道AB的长度.已知在离地面1800m高度C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为60°和45°(即∠DCA=60°,∠DCB=45°).求隧道AB的长.(结果保留根号)
23.(10分)如图,抛物线与轴交于两点,与轴交于点,设抛物线的顶点为点.
(1)求该抛物线的解析式与顶点的坐标.
(2)试判断的形状,并说明理由.
(3)坐标轴上是否存在点,使得以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.
24.(10分)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.
25.(12分)已知为的外接圆,点是的内心,的延长线交于点,交于点.
(1)如图1,求证:.
(2)如图2,为的直径.若,求的长.
26.超速行驶被称为“马路第一杀手”,为了让驾驶员自觉遵守交通规则,市公路检测中在一事故多发地段安装了一个测速仪器,如图所示,已知检测点A设在距离公路BC20米处,∠B=45°,∠C=30°,.
(1)求B,C之间的距离(结果保留根号);
(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:,≈)
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】先将该方程化为一般形式,即可得出结论.
【详解】解:先将该方程化为一般形式:.从而确定二次项系数为5,一次项系数为-6,常数项为8
故选C.
【考点】
此题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.
2、D
【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.
【详解】解:∵DE∥BC
∴△ADE∽△ABC.
又因为DE=2,BC=6,可得相似比为1:3.
即==.
故选D.
【点睛】
本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.
3、A
【解析】首先根据题意作出图形,然后可得△OBC是等边三角形,然后由三角函数的性质,求得OH的长,继而求得正六边形的面积.
【详解】解:如图,连接OB,OC,过点O作OH⊥BC于H,
∵六边形ABCDEF是正六边形,
∴∠BOC=×360°=60°,
∵OB=0C,
∴△OBC是等边三角形,
∴BC=OB=OC=2,
∴它的半径为2,边长为2;
∵在Rt△OBH中,OH=OB•sin60°=2×,
∴边心距是:;
∴S正六边形ABCDEF=6S△OBC=6××2×=6.
故选:A.
【点睛】
本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识.此题难度不大,注意掌握数形结合思想的应用.
4、C
【分析】根据垂直平分线的性质可证①;②是错误的;推导出2组角相等可证△ABC∽△FCD,从而判断③;根据△ABC∽△FCD可推导出④.
【详解】∵BD=CD,DE⊥BC
∴ED是BC的垂直平分线
∴EB=EC,△EBC是等腰三角形,①正确
∴∠B=∠FCD
∵AD=AC
∴∠ACB=∠FDC
∴△ABC∽△FCD,③正确

∵AC=6,∴DF=1,④正确
②是错误的
故选:C
【点睛】
本题考查等腰三角形的性质和相似的证明求解,解题关键是推导出三角形EBC是等腰三角形.
5、A
【分析】根据一元二次方程的定义解答.
【详解】A、是一元二次方程,故A正确;
B、有两个未知数,不是一元二次方程,故B错误;
C、是分式方程,不是一元二次方程,故C正确;
D、a=0时不是一元二次方程,故D错误;
故选:A.
【点睛】
本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.
6、C
【分析】根据轴对称图形和中心对称图形的定义,即可得出答案.
【详解】A.不是轴对称图形,也不是中心对称图形;
B.不是轴对称图形,也不是中心对称图形;
C.是轴对称图形,也是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选:C.
【点睛】
轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、B
【分析】先计算根的判别式的值,然后根据b2−4ac决定抛物线与x轴的交点个数进行判断.
【详解】∵△=22−4×1×2=−4<0,
∴二次函数y=x2+2x+2与x轴没有交点,与y轴有一个交点.
∴二次函数y=x2+2x+2与坐标轴的交点个数是1个,
故选:B.
【点睛】
本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2−4ac决定抛物线与x轴的交点个数;△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.
8、D
【详解】解:根据一元二次方程根的判别式得,
△,
解得a=﹣1.
故选D.
9、D
【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.
【详解】解:点P(3,5)关于原点对称的点的坐标是(-3,-5),
故选D.
【点睛】
本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.
10、D
【解析】∵一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,
∴△=b2﹣4ac=4+4k>1,且k≠1.
解得:k>﹣1且k≠1.故选D.
考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.
11、D
【分析】连接AO,设直径CD的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE,最后根据勾股定理进一步求解即可.
【详解】
如图,连接AO,
设直径CD的长为寸,则半径OA=OC=寸,
∵CD为的直径,弦,垂足为E,AB=10寸,
∴AE=BE=AB=5寸,
根据勾股定理可知,
在Rt△AOE中,,
∴,
解得:,
∴,
即CD长为26寸.
【点睛】

2022-2023学年辽宁省丹东市数学九年级第一学期期末学业质量监测试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数21
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小1.21 MB
  • 时间2025-01-29
最近更新