该【2023届河北省唐山市龙华中学数学九年级第一学期期末经典试题含解析 】是由【1875892****】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【2023届河北省唐山市龙华中学数学九年级第一学期期末经典试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为( )
A.25° B.40° C.35° D.30°
2.如图,△ABC中,点D是AB的中点,点E是AC边上的动点,若△ADE与△ABC相似,则下列结论一定成立的是( )
A.E为AC的中点 B.DE是中位线或AD·AC=AE·AB
C.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°
3.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是( )
A. B.
C. D.
4.已知三角形两边长为4和7,第三边的长是方程的一个根,则第三边长是 ( )
A.5 B.5或11 C.6 D.11
5.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点,分别交PA、PB于E、F,且PA=1.则△PEF的周长为( )
A.1 B.15 C.20 D.25
6.一元二次方程的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.有一个实数根 D.无实数根
7.如图,已知则添加下列一个条件后,仍无法判定的是( )
A. B. C. D.
8.某汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( )
A.180千米/时 B.144千米/时 C.50千米/时 D.40千米/时
9.把抛物线向下平移1个单位再向右平移一个单位所得到的的函数抛物线的解析式是( )
A. B. C. D.
10.如图,矩形的边在x轴上,在轴上,点,把矩形绕点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为( )
A. B. C. D.
二、填空题(每小题3分,共24分)
11.已知一次函数与反比例函数的图象交于点,则________.
12.一个质地均匀的小正方体,六个面分别标有数字“”“”“”“”“”“”,随机掷一次小正方体,朝上一面的数字是奇数的概率是_____.
13.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为_____cm.
14.已知为锐角,且,则度数等于______度.
15.设m,n分别为一元二次方程x2+2x-2 021=0的两个实数根,则m2+3m+n=______.
16.如图,抛物线与轴交于两点,是以点为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是________.
17.如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点为该二次函数在第一象限内的一点,连接,交于点,则的最大值为__________.
18.设m,n分别为一元二次方程x2+2x-2 020=0的两个实数根,则m2+3m+n=______.
三、解答题(共66分)
19.(10分)在如图中,每个正方形有边长为1 的小正方形组成:
(1) 观察图形,请填写下列表格:
正方形边长
1
3
5
7
…
n(奇数)
黑色小正方形个数
…
正方形边长
2
4
6
8
…
n(偶数)
黑色小正方形个数
…
(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.
20.(6分)如图,已知二次函数的图象经过点,.
(1)求的值;
(2)直接写出不等式的解.
21.(6分)已知正比例函数y=x的图象与反比例函数y=(k为常数,且k≠0)的图象有一个交点的纵坐标是1.
(Ⅰ)当x=4时,求反比例函数y=的值;
(Ⅱ)当﹣1<x<﹣1时,求反比例函数y=的取值范围.
22.(8分)如图,在中,,点P为内一点,连接PA,PB,PC,求PA+PB+PC的最小值,小华的解题思路,以点A为旋转中心,将顺时针旋转得到,那么就将求PA+PB+PC的值转化为求PM+MN+PC的值,连接CN,当点P,M落在CN上时,此题可解.
(1)请判断的形状,并说明理由;
(2)请你参考小华的解题思路,证明PA+PB+PC=PM+MN+PC;
(3)当,求PA+PB+PC的最小值.
23.(8分)我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)
24.(8分)解方程:3x2+1=2x.
25.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=20,, CD⊥AB,垂足为D.
(1)求BD的长;
(2)设, ,用、表示.
26.(10分)已知=,求的值.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.
【详解】连接AC,OD.
∵AB是直径,
∴∠ACB=90°,
∴∠ACD=125°﹣90°=35°,
∴∠AOD=2∠ACD=70°.
∵OA=OD,
∴∠OAD=∠ADO,
∴∠ADO=55°.
∵PD与⊙O相切,
∴OD⊥PD,
∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.
故选:C.
【点睛】
本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.
2、D
【分析】如图,分两种情况分析:由△ADE与△ABC相似,得,∠ADE=∠B或∠ADE=∠C,故DE∥BC或∠BDE+∠C=180°.
【详解】因为,△ADE与△ABC相似,
所以,∠ADE=∠B或∠ADE=∠C
所以,DE∥BC或∠BDE+∠C=∠BDE+∠ADE=180°
故选D
【点睛】
本题考核知识点::理解相似三角形性质.
3、D
【解析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.
【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项符合题意.
故选:D.
【点睛】
此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知其定义.
4、A
【分析】求出方程的解x1=11,x2=1,分为两种情况:①当x=11时,此时不符合三角形的三边关系定理;②当x=1时,此时符合三角形的三边关系定理,即可得出答案.
【详解】解:x2-16x+11=0,
(x-11)(x-1)=0,
x-11=0,x-1=0,
解得:x1=11,x2=1,
①当x=11时,
∵4+7=11,
∴此时不符合三角形的三边关系定理,
∴11不是三角形的第三边;
②当x=1时,三角形的三边是4、7、1,
∵此时符合三角形的三边关系定理,
∴第三边长是1.
故选:A.
【点睛】
本题考查了解一元二次方程和三角形的三边关系定理的应用,注意:求出的第三边的长,一定要看看是否符合三角形的三边关系定理,即a+b>c,b+c>a,a+c>b,题型较好,但是一道比较容易出错的题目.
5、C
【分析】由切线长定理知,AE=CE,FB=CF,PA=PB=1,然后根据△PEF的周长公式即可求出其结果.
【详解】解:∵PA、PB分别与⊙O相切于点A、B,
⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,
∴AE=CE,FB=CF,PA=PB=4,
∴△PEF的周长=PE+EF+PF=PA+PB=2.
故选:C.
【点睛】
本题主要考查了切线长定理的应用,解此题的关键是求出△PEF的周长=PA+PB.
6、B
【分析】把一元二次方程转换成一般式:(),再根据求根公式:,将相应的数字代入计算即可.
【详解】解:由题得:
∴一元二次方程有两个相等的实数根
故选:B.
【点睛】
本题主要考查的是一元二次方程的一般式和求根公式,掌握一般式和求根公式是解题的关键.
7、A
【分析】先根据∠1=∠2得出∠BAC=∠DAE,再由相似三角形的判定定理对各选项进行逐一判定即可.
【详解】解:∵∠1=∠2,
∴∠BAC=∠DAE.
A. ,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项符合题意;
B. ,∴△ABC∽△ADE,故本选项不符合题意;
C. ∴△ABC∽△ADE,故本选项不符合题意;
D. ∴△ABC∽△ADE,故本选项不符合题意;
故选:A
【点睛】
本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.
8、C
【分析】根据图像可知为反比例函数,图像过点(3000,20),代入(k),即可求出反比例函数的解析式,再求出牵引力为1200牛时,汽车的速度即可.
【详解】设函数为(k),
代入(3000,20),得,得k=60000,
∴,
∴牵引力为1 200牛时,汽车的速度为= 50千米/时,故选C.
【点睛】
此题主要考查反比例函数的应用,解题的关键是找到已知条件求出反比例函数的解析式.
9、B
【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.
【详解】解:抛物线向下平移1个单位,得:,
再向右平移1个单位,得:,即:,
故选B.
【点睛】
主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.
10、A
【分析】作辅助线证明△∽△ON,列出比例式求出ON=, N=即可解题.
【详解】解:过点作⊥x轴于M,过点作⊥x轴于N,
由旋转可得,△∽△ON,
∵OC=6,OA=10,
∴ON::O=:OM:O=3:4:5,
2023届河北省唐山市龙华中学数学九年级第一学期期末经典试题含解析 来自淘豆网m.daumloan.com转载请标明出处.