下载此文档

2023届海南省三亚市数学八年级第一学期期末学业水平测试模拟试题含解析.doc


文档分类:中学教育 | 页数:约19页 举报非法文档有奖
1/19
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/19 下载此文档
文档列表 文档介绍
该【2023届海南省三亚市数学八年级第一学期期末学业水平测试模拟试题含解析 】是由【1875892****】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2023届海南省三亚市数学八年级第一学期期末学业水平测试模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(  ).
A.5 B.6 C.12 D.16
2.点在( )
A.第一象限 B.第二象限 C.第二象限 D.第四象限
3.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是(  )
A. B. C. D.
4.如图,等边△ABC中,BD⊥AC于D,AD=,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为(   )
A.3cm B.4cm C.5cm D.6cm
5.如图所示,将三角尺的直角顶点放在直尺的一边上,,,则等于(  )
A. B. C. D.
6.下列平面图形中,不是轴对称图形的是( )
A. B. C. D.
7.如果分式的值为0,那么x的值是(  )
A.1 B.﹣1 C.2 D.﹣2
8.下面是课本中“作一个角等于已知角”的尺规作图过程.已知:∠AOB. 求作:一个角,使它等于∠AOB.作法:如图
(1)作射线O'A';
(2)以O为圆心,任意长为半径作弧,交OA于C,交OB于D;
(3)以O'为圆心,OC为半径作弧C'E',交O'A'于C';
(4)以C'为圆心,CD为半径作弧,交弧C'E'于D';
(5)过点D'作射线O'B'.
则∠A'O'B'就是所求作的角.
请回答:该作图的依据是(  )
A.SSS B.SAS C.ASA D.AAS
9.下列长度的每组三根小木棒,能组成三角形的一组是(  )
A.3,3,6 B.4,5,10 C.3,4,5 D.2,5,3
10.关于函数y=﹣3x+2,下列结论正确的是(  )
A.图象经过点(﹣3,2) B.图象经过第一、三象限
C.y的值随着x的值增大而减小 D.y的值随着x的值增大而增大
二、填空题(每小题3分,共24分)
11.春节期间,重百超市推出了甲、乙、丙、丁四种礼品套餐组合:甲套餐每袋装有15个A礼盒,10个B礼盒,10个C礼盒;乙套餐每袋装有5个A礼盒,7个B礼盒,6个C礼盒;丙套餐每袋装有7个A礼盒,8个B礼盒,9个C礼盒;丁套餐每袋装有3个A礼盒,4个B礼盒,4个C礼盒,若一个甲套餐售价1800元,利润率为,一个乙和一个丙套餐一共成本和为1830元,且一个A礼盒的利润率为,问一个丁套餐的利润率为______利润率
12.如图,已知,且,那么是的________(填“中线”或“角平分线”或“高”) .
13.多项式4x2+1加上一个单项式,使它成为一个整式的完全平方,则这个单项式可以是__________________.(填写符合条件的一个即可)
14.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是_____.
15.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.
16.的绝对值是______.
17.在实数范围内分解因式:_______________________.
18.化简:_________.
三、解答题(共66分)
19.(10分)阅读理解:
关于x的方程:x+=c+的解为x1=c,x2=;x﹣=c﹣(可变形为x+=c+)的解为x1=c,x2=;x+=c+的解为x1=c,x2= Zx+=c+的解为x1=c,x2=Z.
(1)归纳结论:根据上述方程与解的特征,得到关于x的方程x+=c+(m≠0)的解为   .
(2)应用结论:解关于y的方程y﹣a=﹣
20.(6分)如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD,
(1)求证:△DEC是等腰三角形.
(2)当∠BDC=5∠EDB, BD=2时,求EB的长.
21.(6分)在如图所示的平面直角坐标系中,描出点A(3,2)和点B(-1,4).
(1)求点A(3,2)关于x轴的对称点C的坐标;
(2)计算线段BC的长度.
22.(8分)如图,在中,平分,,求和的度数.
23.(8分)计算:
(1);
(2)
24.(8分)定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{1,5,5}=1.
(1)根据题意填空:min=   ;
(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;
(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.
25.(10分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上。在建立平面直角坐标系后,点B的坐标为(-1,2).
(1)把△ABC向下平移8个单位后得到对应的△,画出△,并写出坐标;
(2)以原点O为对称中心,画出与△关于原点O对称的△,并写出点的坐标.
26.(10分)观察下列等式:
22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③

(1)第④个等式为   ;
(2)根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】设此三角形第三边长为x,根据三角形的三边关系求出x的取值范围,找到符合条件的x值即可.
【详解】设此三角形第三边长为x,则
10-4﹤x﹤10+4,即6﹤x﹤14,
四个选项中只有12符合条件,
故选:C.
【点睛】
本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边,熟练掌握三角形的三边关系是解答的关键.
2、A
【解析】根据平面直角坐标系中,点所在象限和点的坐标的特点,即可得到答案.
【详解】∵1>0,2>0,
∴在第一象限,
故选A.
【点睛】
本题主要考查点的横纵坐标的正负性和点所在的象限的关系,熟记点的横纵坐标的正负性和所在象限的关系,是解题的关键.
3、A
【解析】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得:.故选A.
4、C
【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,
【详解】解:如图,∵△ABC是等边三角形,
∴BA=BC,
∵BD⊥AC,
∴AD=DC=,
作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+PQ=PE+EQ′=PQ′,
∵AQ=2cm,AD=DC=,
∴QD=DQ′=(cm),
∴CQ′=BP=2(cm),
∴AP=AQ′=5(cm),
∵∠A=60°,
∴△APQ′是等边三角形,
∴PQ′=PA=5(cm),
∴PE+QE的最小值为5cm.
故选:C.
【点睛】
本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.
5、A
【分析】先根据平行线的性质得到,然后根据三角形外角的性质有,最后利用即可求解.
【详解】如图
∵ ,


∴.
故选:A.
【点睛】
本题主要考查平行线的性质及三角形外角的性质,掌握平行线的性质及三角形外角的性质是解题的关键.
6、A
【解析】试题分析:根据轴对称图形的定义作答.
如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.
故选A.
考点:轴对称图形.
7、C
【分析】根据分式值为0得出x-2=0且x+1≠0,求出即可.
【详解】由分式的值为零的条件得x-2=0,x+1≠0,
由x-2=0,得x=2,
由x+1≠0,得x≠-1,
即x的值为2.
故答案选:C.
【点睛】
本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件.
8、A
【分析】根据作图可得DO=D′O′,CO=C′O′,CD=C′D′,再利用SSS判定△D′O′C′≌△DOC即可得出∠A'O'B'=∠AOB,由此即可解决问题.
【详解】解:由题可得,DO=D′O′,CO=C′O′,CD=C′D′,
∵在△COD和△C′O′D′中,

∴△D′O′C′≌△DOC(SSS),
∴∠A'O'B'=∠AOB
故选:A
【点睛】
此题主要考查了基本作图---作一个角等于已知角,三角形全等的性质与判定,熟练掌握相关知识是解题的关键.
9、C
【分析】根据三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,对各选项进行逐一分析即可.
【详解】A、3+3=6,不能构成三角形;
B、4+5<10,不能构成三角形;
C、3+4>5,,能够组成三角形;
D、2+3=5,不能组成三角形.
故选:C.
【点睛】
本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.
10、C
【解析】根据一次函数的性质和一次函数图象的性质,依次分析各个选项,选出正确的选项即可.
【详解】A.把x=﹣3代入y=﹣3x+2得:y=11,即A项错误,
B.函数y=﹣3x+2的图象经过第一、二、四象限,即B项错误,
C.y的值随着x的增大而减小,即C项正确,
D.y的值随着x的增大而减小,即D项错误,
故选C.
【点睛】
本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数的性质和一次函数图象是解题的关键.
二、填空题(每小题3分,共24分)
11、
【分析】先由甲套餐售价1800元,利润率为,可求出甲套餐的成本之和为1500元设每个A礼盒的成本为x元,每个B礼盒的成本为y元,每个C礼盒的成本为z元,则由题意得,可同时消去y和z,得到,再根据一个A礼盒的利润率为,可求出一个A礼盒的售价为50元,进而可得出一个B礼盒与一个C礼盒的售价之和,再由利润率公式求出一个丁套餐的利润率.
【详解】设甲套餐的成本之和m元,则由题意得,解得元.
设每个A礼盒的成本为x元,每个B礼盒的成本为y元,每个C礼盒的成本为z元,由题意得,
同时消去字母y和z,可得
所以
A礼盒的利润率为,可得其利润元,因此一个A礼盒的售价元.
设一个B礼盒的售价为a元,一个C礼盒的售价为b元,则可得,整理得元
所以一个丁套餐的售价元
一个丁套餐的成本元
因此一个丁套餐的利润率
故答案为
【点睛】
本题考查了方程组的应用以及有理数的混合运算,根据运算规律,找出关于x的方程组是解题的关键.
12、中线
【分析】通过证明,可得,从而得证是的中线.

2023届海南省三亚市数学八年级第一学期期末学业水平测试模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数19
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1875892****
  • 文件大小768 KB
  • 时间2025-01-29