下载此文档

吉林省长春五十二中学2022年九年级数学第一学期期末联考模拟试题含解析.doc


文档分类:中学教育 | 页数:约20页 举报非法文档有奖
1/20
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/20 下载此文档
文档列表 文档介绍
该【吉林省长春五十二中学2022年九年级数学第一学期期末联考模拟试题含解析 】是由【1875892****】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【吉林省长春五十二中学2022年九年级数学第一学期期末联考模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.若抛物线y=x2-2x-1与x轴的一个交点坐标为(m,0),则代数式2m2-4m+2017的值为( )
A.2019 B.2018 C.2017 D.2015
2.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了( )
A.6m B.8m C.10m D.12m
3.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是(  )
A.线段 B.三角形 C.平行四边形 D.正方形
4.如图是由四个相同的小正方体组成的立体图形,它的主视图为( ).
A. B. C. D.
5.如图,已知小明、,,,已知小明、,,则路灯的高为(  )
A. B. C. D.
6.已知抛物线,则下列说法正确的是( )
A.抛物线开口向下 B.抛物线的对称轴是直线
C.当时,的最大值为 D.抛物线与轴的交点为
7.已知△ABC∽△A'B'C,AB=8,A'B'=6,则△ABC与△A'B'C的周长之比为(  )
A. B. C. D.
8.如图,在正方形中,绕点顺时针旋转后与重合,,,则的长度为( )
A.4 B. C.5 D.
9.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是( )
A.AC∥OD B.
C.△ODE∽△ADO D.
10.如图,DE是的中位线,则与的面积的比是  
A.1:2
B.1:3
C.1:4
D.1:9
11.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于( )
A. B. C. D.
12.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,,,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,,则应把出水口的高度调节为高出水面(  )
A. B.米 C.米 D.
二、填空题(每题4分,共24分)
13.某一时刻,.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.
14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.
15.已知二次函数的自变量与函数的部分对应值列表如下:

-3
-2
-1
0


0
-3
-4
-3

则关于的方程的解是______.
16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
17.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为
,该物体对地面的压强是______Pa.
18.某剧场共有个座位,已知每行的座位数都相同,且每行的座位数比总行数少,求每行的座位数.如果设每行有个座位,根据题意可列方程为_____________.
三、解答题(共78分)
19.(8分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
销售量n(件)
销售单价m(元/件)
(1)请计算第几天该商品单价为25元/件?
(2)求网店第几天销售额为792元?
(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?
20.(8分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,,减少损失,对价格经过两次下调后,.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:
方案一:打九折销售;
方案二:不打折,每吨优惠现金200元.
试问小华选择哪种方案更优惠,请说明理由.
21.(8分)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,即AQ是⊙O的切线,若∠QAP=α,地球半径为R,
求:(1)航天飞机距地球表面的最近距离AP的长;
(2)P、Q两点间的地面距离,即的长.(注:本题最后结果均用含α,R的代数式表示)
22.(10分)用一根长12的铁丝能否围成面积是7的矩形?请通过计算说明理由.
23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;
(3)已如函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
24.(10分)如图,是的直径,点在上,垂直于过点的切线,垂足为.
(1)若,求的度数;
(2)如果,,则 .
25.(12分)如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.
(1)求证:CD是⊙O的切线;
(2)若AB=4,BD=3,求CD的长.
26.如图,在平面直角坐标系xOy中,曲线经过点A.
(1)求曲线的表达式;
(2)直线y=ax+3(a≠0)与曲线围成的封闭区域为图象G.
①当时,直接写出图象G上的整数点个数是 ;(注:横,纵坐标均为整数的点称为整点,图象G包含边界.)
②当图象G内只有3个整数点时,直接写出a的取值范围.
参考答案
一、选择题(每题4分,共48分)
1、A
【分析】将代入抛物线的解析式中,可得,变形为然后代入原式即可求出答案.
【详解】将代入,
∴,
变形得:,
∴,
故选:A.
【点睛】
本题考查抛物线的与轴的交点,解题的关键是根据题意得出,本题属于基础题型.
2、A
【解析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.
【详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得
9x2+16x2=100,
∴x=2,
∴3x=6m.
故选A.
【点睛】
此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
3、B
【解析】根据长方形放置的不同角度,得到的不同影子,发挥想象能力逐个实验即可.
【详解】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;
将长方形硬纸板与地面平行放置时,形成的影子为矩形;
将长方形硬纸板倾斜放置形成的影子为平行四边形;
由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.
故选:B.
【点睛】
本题主要考查几何图形的投影,关键在于根据不同的位置,识别不同的投影图形.
4、A
【分析】根据几何体的三视图解答即可.
【详解】根据立体图形得到:
主视图为:,
左视图为:,
俯视图为:,
故答案为:A.
【点睛】
此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.
5、B
【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知, ,即可得到结论.
【详解】解:如图,∵CD∥AB∥MN,
∴△ABE∽△CDE,△ABF∽△MNF,
∴,
即,,
解得:AB=,
故选:B.
【点睛】
本题考查的是相似三角形的应用,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.
6、D
【分析】根据二次函数的性质对A、B进行判断;根据二次函数图象上点的坐标特征对C进行判断;利用抛物线与轴交点坐标对D进行判断.
【详解】A、a=1>0,则抛物线的开口向上,所以A选项错误;
B、抛物线的对称轴为直线x=1,所以B选项错误;
C、当x=1时,有最小值为,所以C选项错误;
D、当x=0时,y=-3,故抛物线与轴的交点为,所以D选项正确.
故选:D.
【点睛】
本题考查了二次函数的性质,主要涉及开口方向,对称轴,与y轴的交点坐标,最值问题,熟记二次函数的性质是解题的关键.
7、C
【分析】直接利用相似三角形的性质周长比等于相似比,进而得出答案.
【详解】解:∵△ABC∽△A'B'C,AB=8,A'B'=6,
∴△ABC与△A'B'C的周长之比为:8:6=4:1.
故选:C.
【点睛】
本题主要考查了相似三角形的性质,正确得出相似比是解题关键.
8、D
【分析】先根据旋转性质及正方形的性质构造方程求正方形的边长,再利用勾股定理求值即可.
【详解】绕点顺时针旋转后与重合
四边形ABCD为正方形
在中,
故选D.
【点睛】
本题考查了全等三角形的性质、旋转的性质、正方形的性质、勾股定理,找到直角三角形运用勾股定理求值是解题的关键.
9、A
【分析】,利用等量代换求证∠CAD=∠ADO即可;
⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;
,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;
∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.
【详解】解:解:A.∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO= ∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴A正确.
,过点E作EF⊥AC,
∵OC⊥AB,AD平分∠CAB交弧BC于点D,
∴OE=EF,
在Rt△EFC中,CE>EF,
∴CE>OE,
∴B错误.
C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,
∵∠COD=2∠CAD=2∠OAD,
∴∠DOE≠∠DAO,
∴不能证明△ODE和△ADO相似,
∴C错误;
D.∵AD平分∠CAB交于点D,
∴∠CAD=∠BAD.
∴CD=BD
∴BC<CD+BD=2CD,
∵半径OC⊥AB于O,
∴AC=BC,

吉林省长春五十二中学2022年九年级数学第一学期期末联考模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数20
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1875892****
  • 文件大小1.31 MB
  • 时间2025-01-29