下载此文档

山东省临朐县2022-2023学年数学九上期末学业水平测试试题含解析.doc


文档分类:中学教育 | 页数:约15页 举报非法文档有奖
1/15
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/15 下载此文档
文档列表 文档介绍
该【山东省临朐县2022-2023学年数学九上期末学业水平测试试题含解析 】是由【guwutang】上传分享,文档一共【15】页,该文档可以免费在线阅读,需要了解更多关于【山东省临朐县2022-2023学年数学九上期末学业水平测试试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是( )
A.两点之间线段最短 B.两点确定一条直线
C.三角形具有稳定性 D.长方形的四个角都是直角
2.在平面直角坐标系中,点P(﹣2,7)关于原点的对称点P'在(  )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.在中, ,则( ).
A. B. C. D.
4.抛物线经过平移得到抛物线,平移的方法是( )
A.向左平移1个单位,再向下平移2个单位
B.向右平移1个单位,再向下平移2个单位
C.向左平移1个单位,再向上平移2个单位
D.向右平移1个单位,再向上平移2个单位
5.二次函数的图象向上平移个单位得到的图象的解析式为( )
A. B. C. D.
6.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在( )
A.的三边高线的交点处
B.的三角平分线的交点处
C.的三边中线的交点处
D.的三边中垂线线的交点处
7.下列事件中,是必然事件的是( )
A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是180° D.经过有交通信号灯的路口,遇到红灯
8.对于反比例函数,如果当≤≤时有最大值,则当≥8时,有( )
A.最大值 B.最小值 C.最大值= D.最小值=
9.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为( )
A.向左平移个单位,向下平移个单位
B.向左平移个单位,向上平移个单位
C.向右平移个单位,向下平移个单位
D.向右平移个单位,向上平移个单位
10.已知线段a是线段b,c的比例中项,则下列式子一定成立的是( )
A. B. C. D.
二、填空题(每小题3分,共24分)
11.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为_____.
12.已知关于x的方程有两个不相等的实数根,则的取值范__________.
13.若将方程x2+6x=7化为(x+m)2=16,则m=______.
14.在一个暗箱里放有m个除颜色外其他完全相同的小球,这m个小球中红球只有4个,每次将球搅匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算m大约是_____.
15.如图,某小区规划在一个长30 m、宽20 m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行, m2,那么通道的宽应设计成多少m?设通道的宽为x m,由题意列得方程____________
16.如图,半径为3的圆经过原点和点,点是轴左侧圆优弧上一点,则_____.
17.若关于的一元二次方程有实数根,则的取值范围是_____.
18.6与x的2倍的和是负数,用不等式表示为 .
三、解答题(共66分)
19.(10分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.
20.(6分)先化简,再从中取一个恰当的整数代入求值.
21.(6分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).
(1)求抛物线的解析式和直线AD的解析式;
(2)过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
22.(8分)如图,某科技物展览大厅有A、B两个入口,C、D、, 参观结束后任选一个出口离开.
(1)若小昀已进入展览大厅,求他选择从出口C离开的概率.
(2)求小昀选择从入口A进入,从出口E离开的概率.(请用列表或画树状图求解)
23.(8分)如图,锐角三角形中,,分别是,边上的高,垂足为,.
(1)证明:.
(2)若将,连接起来,则与能相似吗?说说你的理由.
24.(8分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.
(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;
(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.
25.(10分)(发现)在解一元二次方程的时候,发现有一类形如x2+(m+n)x+mn=0的方程,其常数项是两个因数的积,而它的一次项系数恰好是这两个因数的和,则我们可以把它转化成x2+(m+n)x+mn=(m+x)(m+n)=0
(探索)解方程:x2+5x+6=0:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3),原方程可转化为(x+2)(x+3)=0,即x+2=0或x+3=0,进而可求解.
(归纳)若x2+px+q=(x+m)(x+n),则p=   q=   ;
(应用)
(1)运用上述方法解方程x2+6x+8=0;
(2)结合上述材料,并根据“两数相乘,同号得正,异号得负“,求出一元二次不等式x2﹣2x﹣3>0的解.
26.(10分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);
(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】根据三角形的稳定性,可直接选择.
【详解】加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.
故选:C.
2、D
【分析】平面直角坐标系中任意一点,关于原点对称的点的坐标是,即关于原点对称的点的横纵坐标都互为相反数,这样就可以确定其对称点所在的象限.
【详解】∵点关于原点的对称点的坐标是,∴点关于原点的对称点在第四象限.
故选:D.
【点睛】
本题比较容易,考查平面直角坐标系中关于原点对称的两点的坐标之间的关系,是需要识记的内容.
3、A
【分析】利用正弦函数的定义即可直接求解.
【详解】sinA.
故选:A.
【点睛】
本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
4、D
【解析】∵抛物线y=-3(x+1)2-2的顶点坐标为(-1,-2),
平移后抛物线y=-3x2的顶点坐标为(0,0),
∴平移方法为:向右平移1个单位,再向上平移2个单位.
故选D.
5、B
【分析】直接根据“上加下减”的原则进行解答即可.
【详解】由“上加下减”的原则可知,把二次函数y=x2的图象向上平移2个单位,得到的新图象的二次函数解析式是:y=x2+2.
故答案选B.
【点睛】
本题考查了二次函数图象与几何变换,解题的关键是熟练的掌握二次函数图象与几何变换.
6、D
【分析】根据题意知,猫应该蹲守在到三个洞口的距离相等的位置上,则此点就是三角形三边垂直平分线的交点.
【详解】解:根据三角形三边垂直平分线的交点到三个顶点的距离相等,可知猫应该蹲守在△ABC三边的中垂线的交点上.
故选:D.
【点睛】
考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.
7、C
【解析】事先能肯定它一定会发生的事件称为必然事件,根据事件发生的可能性大小判断相应事件的类型即可.
【详解】解:A、购买一张彩票,中奖,是随机事件,故A不符合题意;
B、射击运动员射击一次,命中靶心,是随机事件,故B不符合题意;
C、任意画一个三角形,其内角和是180°,是必然事件,故C符合题意;
D、经过有交通信号灯的路口,遇到红灯,是随机事件,故D不符合题意;
故选:C.
【点睛】
本题考查了随机事件、不可能事件,随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.
8、D
【解析】解:由当时有最大值,得时,,,
反比例函数解析式为,
当时,图象位于第四象限,随的增大而增大,
当时,最小值为
故选D.
9、D
【解析】二次函数y=x1+4x+3=(x+1)1-1,
将其向右平移1个单位,再向上平移1个单位得到二次函数y=x1.
故选D.
点睛:抛物线的平移时解析式的变化规律:左加右减,上加下减.
10、B
【解析】根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.
【详解】A选项,由 得,b2=ac,所以b是a,c的比例中项,不符合题意;
B选项,由得a2=bc,所以a是b,c的比例中项,符合题意;
C选项,由,得c2=ab,所以c是a,b的比例中项,不符合题意;
D选项,由得b2=ac,所以b是a,c的比例中项,不符合题意;
故选B.
【点睛】
本题考核知识点:本题主要考查了比例线段.解题关键点:理解比例中项的意义.
二、填空题(每小题3分,共24分)
11、90°
【分析】先根据骑自行车上学的学生有12人占25%,求出总人数,再根据步行上学的学生人数所对应的圆心角的度数为所占的比例乘以360度,即可求出答案.
【详解】解:根据题意得:
总人数是:12÷25%=48人,
所以乘车部分所对应的圆心角的度数为360°×=90°;
故答案为:90°.
【点睛】
此题主要考查了扇形统计图,读懂统计图,从统计图中得到必要的信息,列出算式是解决问题的关键.
12、且;
【分析】根据一元二次方程的定义和根的判别式得出不等式组,求出不等式组的解集即可.
【详解】∵关于x的方程(k-1)x1-x+1=0有两个不相等的实数根,
∴k-1≠0且△=(-1)1-4(k-1)•1=-4k+9>0,
即,
解得:k<且k≠1,
故答案为k<且k≠1.
【点睛】
本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式组是解此题的关键.
13、3
【详解】在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,
∴(x+3)2=16
∴m=3.
14、1
【分析】由于摸到红球的频率稳定在25%,由此可以确定摸到红球的概率为25%,而m个小球中红球只有4个,由此即可求出m.
【详解】∵摸到红球的频率稳定在25%,
∴摸到红球的概率为25%,
而m个小球中红球只有4个,
∴推算m大约是4÷25%=1.
故答案为:1.
【点睛】
本题考查了利用频率估计概率,其中解题时首先通过实验得到事件的频率,然后利用频率估计概率即可解决问题.
15、(30-2x)(20-x)=6×1.
【解析】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.
可列方程(30-2x)(20-x)=6×1.
16、
【分析】由题意运用圆周角定理以及锐角三角函数的定义进行分析即可得解.
【详解】解:假设圆与下轴的另一交点为D,连接BD,
∵,
∴BD为直径,,
∵点,
∴OB=2,
∴,
∵OB为和公共边,
∴,
∴.
故答案为:.
【点睛】
本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等以及熟记锐角三角函数的定义是解题的关键.
17、且k≠1.
【分析】根据一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.
【详解】解:根据题意得且,
解得:且k≠1.
故答案是:且k≠1.
【点睛】
本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.
18、6+2x<1
【解析】试题分析:6与x的2倍的和为2x+6;和是负数,那么前面所得的结果小于1.
解:x的2倍为2x,
6与x的2倍的和写为6+2x,
和是负数,
∴6+2x<1,
故答案为6+2x<1.
三、解答题(共66分)
19、小路的宽为2m.
【解析】如果设小路的宽度为xm,那么整个草坪的长为(2﹣2x)m,宽为(9﹣x)m,根据题意即可得出方程.
【详解】设小路的宽度为xm,那么整个草坪的长为(2﹣2x)m,宽为(9﹣x)m.根据题意得:
(2﹣2x)(9﹣x)=222
解得:x2=2,x2=2.

山东省临朐县2022-2023学年数学九上期末学业水平测试试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数15
  • 收藏数0 收藏
  • 顶次数0
  • 上传人guwutang
  • 文件大小670 KB
  • 时间2025-01-29
最近更新