下载此文档

山东省济南市名校2022年八年级数学第一学期期末综合测试试题含解析.doc


文档分类:中学教育 | 页数:约22页 举报非法文档有奖
1/22
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/22 下载此文档
文档列表 文档介绍
该【山东省济南市名校2022年八年级数学第一学期期末综合测试试题含解析 】是由【hezhihe】上传分享,文档一共【22】页,该文档可以免费在线阅读,需要了解更多关于【山东省济南市名校2022年八年级数学第一学期期末综合测试试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1. “某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x米,则可得方程.”根据此情境,题中用“×××××”表示得缺失的条件,应补为(  )
A.每天比原计划多铺设10米,结果延期20天才完成任务
B.每天比原计划少铺设10米,结果延期20天才完成任务
C.每天比原计划多铺设10米,结果提前20天完成任务
D.每天比原计划少铺设10米,结果提前20天完成任务
2.某景点普通门票每人50元,20人以上(含20人)的团体票六折优惠,现有一批游客不足20人,但买20人的团体票所花的钱,比各自买普通门票平均每人会便宜至少10元,这批游客至少有( )
A.14 B.15 C.16 D.17
3.的值是( )
A.16 B.2 C. D.
4.如图,在中,,,垂直平分,交于点若,则等于( )
A. B. C. D.
5.将进行因式分解,正确的是( )
A. B.
C. D.
6. “高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是( )
A. B. C. D.
7.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为(  )
A.15° B.20° C.25° D.30°
8.化简式子的结果为( )
A. B. C. D.
9.在平面直角坐标系中,点M(1,2)关于y轴对称的点的坐标为( )
A.(-1,2) B.(2,-1) C.(-1,-2) D.(1,-2)
10.已知如图,等腰中,于点,点是延长线上一点,点是线段上一点,下面的结论:①;②是等边三角形;③;④.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.①②③④
二、填空题(每小题3分,共24分)
11.,则__________.
12.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=140°,则∠a的度数是________
13.等腰三角形的一个外角为100°,则它的底角是______.
14.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.
15.如图,△中,,边的垂直平分线分别交、于点、,边的垂直平分线分别交、于点、,则△周长为____.
16.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)和(3,0),点C是y轴上的一个动点,连接AC、BC,则△ABC周长的最小值是_____.
17.如图,CD是的角平分线,于E,,的面积是9,则的面积是_____.
18.已知,如图,中,,,为形内一点,若,,则的度数为__________.
三、解答题(共66分)
19.(10分)设,求代数式和的值
20.(6分)如图,点A、F、C、D在同一条直线上,已知AC=DF,∠A=∠D,AB=DE,求证:BC∥EF
21.(6分)如图,,,于点.求证:.
22.(8分)(1)如图中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC; ②AD+AB=AC.请你证明结论②;
(2)如图中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
23.(8分)解下列分式方程:
(1)
(2).
24.(8分)平面内的两条直线有相交和平行两种位置关系.
(1)如图1,若,点在、内部, , ,求的度数.
(2)如图2,在AB∥CD的前提下,将点移到、外部,则、、之间有何数量关系?请证明你的结论.
(3)如图3,写出、、、之间的数量关系?(不需证明)
(4)如图4,求出的度数.
25.(10分)如图,在平面直角坐标系中,直线y=x+与反比例函数y=(x<0)的图象交于A(-4,a)、B(-1,b)两点,AC⊥x轴于C,BD⊥y轴于D.
(1)求a 、b及k的值;
(2)连接OA,OB,求△AOB的面积.
26.(10分)(1)解方程:;
(2)解方程:.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】由题意根据工作时间=工作总量÷工作效率,那么4000÷x表示原来的工作时间,那么4000÷(x+10)就表示现在的工作时间,20就代表原计划比现在多的时间进行分析即可.
【详解】解:原计划每天铺设管道x米,那么x+10就应该是实际每天比原计划多铺了10米,
而用则表示用原计划的时间﹣实际用的时间=20天,
那么就说明每天比原计划多铺设10米,结果提前20天完成任务.
故选:C.
【点睛】
本题考查分式方程的应用,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.
2、B
【分析】设这批游客有x人,先求出这批游客通过购买团体票,每人平均所花的钱,再依题意列出不等式求解即可.
【详解】设这批游客有x人,则通过购买团体票,每人平均所花的钱为

由题意得
解得
经检验,是原不等式的解
则这批游客至少有15人
故选:B.
【点睛】
本题考查了不等式的实际应用,依据题意,正确建立不等式是解题关键.
3、B
【分析】根据算术平方根的定义求值即可.
【详解】=1.
故选:B.
【点睛】
本题考查算术平方根,属于基础题型.
4、A
【分析】根据垂直平分线的性质,得出AE=BE=6,再由三角形外角的性质得出∠AEC=∠ABE+∠BAE=30°,最后由含30°的直角三角形的性质得出AC的值即可.
【详解】解:∵垂直平分,
∴AE=BE=6,

∴∠ABE=∠BAE=15°,
∴∠AEC=∠ABE+∠BAE=30°,
又∵
∴在RT△AEC中,
故答案为:A.
【点睛】
本题考查了垂直平分线的性质、三角形的外角的性质、含30°的直角三角形的性质,熟知上述几何性质是解题的关键.
5、C
【分析】多项式有公因式,首先用提公因式法提公因式,提公因式后,得到多项式
,再利用平方差公式进行分解.
【详解】,
故选C.
【点睛】
此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;
6、D
【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.
【详解】解:根据轴对称图形的定义,只有D选项图形是轴对称图形.
故选:D
【点睛】
本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.
7、B
【分析】根据三角形的外角性质即可求出答案.
【详解】解:延长AC交BD于点E,
设∠ABP=α,
∵BP平分∠ABD,
∴∠ABE=2α,
∴∠AED=∠ABE+∠A=2α+60°,
∴∠ACD=∠AED+∠D=2α+80°,
∵CP平分∠ACD,
∴∠ACP=∠ACD=α+40°,
∵∠AFP=∠ABP+∠A=α+60°,
∠AFP=∠P+∠ACP
∴α+60°=∠P+α+40°,
∴∠P=20°,
故选B.
【点睛】
此题考查三角形,解题的关键是熟练运用三角形的外角性质,本题属于基础题型.
8、D
【分析】根据二次根式有意义的条件即可求出a的取值范围,然后根据二次根式的除法公式和分母有理化化简即可.
【详解】解:

即,
故选:D.
【点睛】
此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.
9、A
【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.
【详解】解:点M(1,2)关于y轴对称的点的坐标为(-1,2),
故选:A.
【点睛】
此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.
10、A
【分析】①连接BO,根据等腰三角形的性质可知AD垂直平分BC,从而得出BO=CO,又OP=OC,得到BO=OP,再根据等腰三角形的性质可得出结果;
②证明∠POC=60°,结合OP=OC,即可证得△OPC是等边三角形;
③在AC上截取AE=PA,连接PE,先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP;
④根据∠APO=∠ABO,∠DCO=∠DBO,因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断.
【详解】解:①如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°-∠BAD=30°,
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
②∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°-(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形,故②正确;
③如图2,在AC上截取AE=PA,连接PE,
∵∠PAE=180°-∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,在△OPA和△CPE中,,

山东省济南市名校2022年八年级数学第一学期期末综合测试试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数22
  • 收藏数0 收藏
  • 顶次数0
  • 上传人hezhihe
  • 文件大小989 KB
  • 时间2025-01-29
最近更新