下载此文档

海南省重点中学2022-2023学年数学八上期末经典试题含解析.doc


文档分类:中学教育 | 页数:约20页 举报非法文档有奖
1/20
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/20 下载此文档
文档列表 文档介绍
该【海南省重点中学2022-2023学年数学八上期末经典试题含解析 】是由【jimilu】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【海南省重点中学2022-2023学年数学八上期末经典试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,在中,,D是AB上的点,过点D作  交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有( )
①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.
A.①②③ B.①②④ C.②③④ D.①②③④
2.在坐标平面上有一个轴对称图形,其中A(3,﹣)和B(3,﹣)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是(  )
A.(﹣2,1) B.(﹣2,﹣) C.(﹣,﹣9) D.(﹣2,﹣1)
3.如图,菱形的对角线长分别为,则这个菱形面积为( )
A. B. C. D.
4.若(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,则常数a、b的值为(  )
A.a=1,b=﹣1 B.a=﹣1,b=1 C.a=1,b=1 D.a=﹣1,b=﹣1
5.如图,,分别是△ABC的高和角平分线,且,,则的度数为( )
A. B. C. D.
6.将一副三角板按如图放置,则下列结论①;②如果,则有;③如果,则有;④如果,必有,其中正确的有( )
A.①②③ B.①②④ C.③④ D.①②③④
7.如图,如在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于( )
A.8 B.4 C.2 D.1
8.下列运算中,正确的是( )
A. B. C. D.
9.若分式有意义,则的取值范围是( )
A. B. C. D.
10.若是完全平方式,则的值为( )
A.3或 B.7或 C.5 D.7
二、填空题(每小题3分,共24分)
11.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是_____.
12.若m+n=1,mn=2,则的值为_____.
13.若x+y=5,xy=6,则x2+y2+2006的值是_____.
14.若分式方程﹣=2有增根,则a=_____.
15.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.,该长度用科学记数法表示为 .
16.如图,中,,,,、分别是、上的动点,则的最小值为______.
17.平面直角坐标系中,点与点之间的距离是____.
18.如图,等腰三角形ABC的底边BC长为8cm,面积是48,腰AB的垂直平分线EF分别交AB,AC于点E,F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为___________.
三、解答题(共66分)
19.(10分)先化简,再求值:,其中
20.(6分)取一副三角板按图拼接,固定三角板,将三角板绕点依顺时针方向旋转一个大小为的角得到,图所示.试问:
当为多少时,能使得图中?说出理由,
连接,假设与交于与交于,当时,探索值的大小变化情况,并给出你的证明.
21.(6分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,当△PCD的周长最小时,在图中画出点P的位置,并求点P的坐标.
22.(8分)近年来,随着我国科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”.高铁事业是“中国创造”的典范,它包括D字头的动车以及G字头的高铁,已知,由站到站高铁的平均速度是动车平均速度的倍,行驶相同的路程400千米.高铁比动车少用个小时.
(1)求动车的平均速度;
(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段站到站的动车票价为元/张,高铁票价为元/张,求动车票价为多少元
/张时,高铁的性价比等于动车的性价比?
23.(8分)某超市每天都用360元从批发商城批发甲乙两种型号“垃圾分类”垃圾桶进行零售,批发价和零售价如下表所示:
批发价(元个)
零售价(元/个)
甲型号垃圾桶
12
16
乙型号垃圾桶
30
36
若设该超市每天批发甲型号“垃圾分类”垃圾桶x个,乙型号“垃圾分类”垃圾桶y个,
(1)求y关于x的函数表达式.
(2)若某天该超市老板想将两种型号的“垃圾分类”垃圾桶全部售完后,所获利润率不低于30%,则该超市至少批发甲型号“垃圾分类”垃圾桶多少个?(利润率=利润/成本).
24.(8分)第7届世界军人运动会于2019年10月18日在武汉开幕,为备战本届军运会,某运动员进行了多次打靶训练,现随机抽取该运动员部分打靶成绩进行整理分析,共分成四组:(优秀)、(良好)、(合格)、(不合格),绘制了如下不完整的统计图:
根据以上信息,解答下列问题:
(1)直接写出本次统计成绩的总次数和图中的值.
(2)求扇形统计图中(合格)所对应圆心角的度数.
(3)请补全条形统计图.
25.(10分)如图,是等边三角形,、、分别是、、上一点,且.
(1)若,求;
(2)如图2,连接,若,求证:.
26.(10分)为创建全国卫生城市,我市某单位全体职工利用周末休息时间参加社会公益活动,并对全体职工参加公益活动的时间单位:天进行了调查统计,根据调查结果绘制了如图所示的两幅不完整的统计图,根据信息回答下列问题:
该单位职工共有______名;
补全条形统计图;
职工参加公益活动时间的众数是______天,中位数是______天;
职工参加公益活动时间总计达到多少天?
参考答案
一、选择题(每小题3分,共30分)
1、B
【解析】由在△ABC中,∠ACB=90°,DE⊥AB,根据等角的余角相等,可得①∠DCB=∠B正确;
由①可证得AD=BD=CD,即可得②CD=AB正确;
易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;
由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.
【详解】在△ABC中,∵∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°.
∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;
∴CD=BD.
∵AD=BD,∴CD=AB;故②正确;
∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;
∵∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=30°.
∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.
故选B.
【点睛】
本题考查了等腰三角形的性质与判定、等边三角形的性质与判定以及直角三角形的性质.注意证得D是AB的中点是解答此题的关键.
2、A
【分析】先利用点A和点B的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C关于直线y=-4的对称点即可.
【详解】解:∵A(3,﹣)和B(3,﹣)是图形上的一对对称点,
∴点A与点B关于直线y=﹣4对称,
∴点C(﹣2,﹣9)关于直线y=﹣4的对称点的坐标为(﹣2,1).
故选:A.
【点睛】
本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m对称,则两点的纵坐标相同,横坐标和为2m;关于直线y=n对称,则两点的横坐标相同,纵坐标和为2n.
3、A
【解析】直接根据菱形的面积等于它的两条对角线的乘积的一半求出答案即可.
【详解】∵AC=5cm,BD=8cm,
∴菱形的面积=×5×8=10cm1.
故选:A.
【点睛】
本题考查了菱形的性质,熟知菱形ABCD的面积等于对角线乘积的一半是解题的关键.
4、A
【分析】根据多项式乘以多项式法则展开,即可得出﹣1+a=1,﹣b﹣a=1,求出即可.
【详解】解:(x+a)(x2﹣x﹣b)=x3﹣x2﹣bx+ax2﹣ax﹣ab
=x3+(﹣1+a)x2+(﹣b﹣a)x﹣ab,
∵(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,
∴﹣1+a=1,﹣b﹣a=1,
∴a=1,b=﹣1,
故选:A.
【点睛】
本题考查了多项式乘以多项式法则的应用,关键根据(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,得出方程-1+a=1, -b-a=1.
5、B
【分析】由AD是BC边上的高可得出∠ADE=90°,在△ABC中利用三角形内角和定理可求出∠BAC的度数,由角平分线的定义可求出∠BAD的度数,再根据三角形外角的性质可求出∠ADE的度数,在△ADE中利用三角形内角和定理可求出∠DAE的度数;
【详解】∵AD是BC边上的高,
∴∠ADE=90°,
∵∠BAC+∠B+∠C=180°,
∴∠BAC=180°-∠B-∠C=70°,
∵AD是∠BAC平分线,
∴,
∴∠ADE=∠B+∠BAD=32°+35°=67°,
∵∠ADE+∠AED+∠DAE=180°,
∴∠DAE=180°-∠ADE-∠AED=180°-90°-67°=23°;
故答案为:B.
【点睛】
本题考查了三角形内角和定理以及三角形外角的性质,解题的关键是利用三角形外角的性质求出∠
AED的度数
6、D
【分析】根据∠1+∠2=∠3+∠2即可证得①;根据求出∠1与∠E的度数大小即可判断②;利用∠2求出∠3,与∠B的度数大小即可判断③;利用求出∠1,即可得到∠2的度数,即可判断④.
【详解】∵∠1+∠2=∠3+∠2=90,
∴∠1=∠3,故①正确;
∵,

∠E=60,
∴∠1=∠E,
∴AC∥DE,故②正确;
∵,
∴,
∵,
∴∠3=∠B,
∴,故③正确;
∵,
∴∠CFE=∠C,
∵∠CFE+∠E=∠C+∠1,
∴∠1=∠E=,
∴∠2=90-∠1=,故④正确,
故选:D.
【点睛】
此题考查互余角的性质,平行线的判定及性质,熟练运用解题是关键.
7、A
【分析】根据线段垂直平分线的性质可得AD=BD,AE=EC,进而可得AD+ED+AE=BD+DE+EC,从而可得答案.
【详解】解:∵AB的垂直平分线交BC于D,
∴AD=BD,
∵AC的垂直平分线交BC与E,
∴AE=CE,
∵BC=1,
∴BD+CE+DE=1,
∴AD+ED+AE=1,
∴△ADE的周长为1,
故答案为:1.
【点睛】
此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.
8、D
【分析】根据同底数幂乘法、幂的乘方、积的乘方、单项式的乘法等公式计算问题可解
【详解】解:A. ,故A错误;
B. ,故B错误;
C. ,故C错误;
D. 正确
故应选D
【点睛】
本题考查了同底数幂乘法、幂的乘方、积的乘方、单项式的乘法等知识点,解答关键是根据运算法则进行计算.
9、A
【分析】根据分式有意义的条件,得到关于x的不等式,进而即可求解.
【详解】∵分式有意义,
∴,即:,

海南省重点中学2022-2023学年数学八上期末经典试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数20
  • 收藏数0 收藏
  • 顶次数0
  • 上传人jimilu
  • 文件大小1.18 MB
  • 时间2025-01-29
最近更新