下载此文档

§6.4-数列的综合应用(试题部分).docx


文档分类:中学教育 | 页数:约20页 举报非法文档有奖
1/20
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/20 下载此文档
文档列表 文档介绍
该【§6.4-数列的综合应用(试题部分) 】是由【rongfunian】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【§6.4-数列的综合应用(试题部分) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。§ 数列的综合应用
探考情 悟真题
【考情探究】
考点
内容解读
5年考情
预测
热度
考题示例
考向
关联考点
数列求和
掌握数列的求和方法
2019天津,18,13分
数列求和(错位相减法)
求通项公式
★★★
2017课标全国Ⅲ,17,12分
数列求和(裂项相消法)
由递推式求通项公式
数列的综
合应用
能综合应用等差、等比数列解决相应问题
2016课标全国Ⅰ,17,12分
等差、等比数列的综合问题
等差数列的判定
★★★
分析解读
综合运用数列,特别是等差数列、等比数列的有关知识,解答数列综合问题和实际问题,培养学生的理解能力、,、中、高档试题均有出现,,属于中档题.
破考点 练考向
【考点集训】
考点一 数列求和
1.(2018福建闽侯第八中学期末,16)已知数列{nan}的前n项和为Sn,且an=2n,则使得Sn-nan+1+50<0的最小正整数n的值为    . 
答案 5
2.(2019湖南郴州第二次教学质量监测,16)已知数列{an}和{bn}满足a1a2a3…an=2bn(n∈N*),若数列{an}为等比数列,且a1=2,a4=16,则数列1bn的前n项和Sn=    . 
答案 2nn+1
3.(2018河南、河北两省联考,18)已知数列{an}的前n项和为Sn,a1=5,nSn+1-(n+1)Sn=n2+n.
(1)求证:数列Snn为等差数列;
(2)令bn=2nan,求数列{bn}的前n项和Tn.
答案 (1)证明:由nSn+1-(n+1)Sn=n2+n得Sn+1n+1-Snn=1,
又S11=5,所以数列Snn是首项为5,公差为1的等差数列.
(2)由(1)可知Snn=5+(n-1)=n+4,所以Sn=n2+4n.
当n≥2时,an=Sn-Sn-1=n2+4n-(n-1)2-4(n-1)=2n+3.
又a1=5符合上式,所以an=2n+3(n∈N*),
所以bn=(2n+3)2n,
所以Tn=5×2+7×22+9×23+…+(2n+3)2n,①
2Tn=5×22+7×23+9×24+…+(2n+1)2n+(2n+3)2n+1,②
所以②-①得
Tn=(2n+3)2n+1-10-(23+24+…+2n+1)
=(2n+3)2n+1-10-23(1-2n-1)1-2
=(2n+3)2n+1-10-(2n+2-8)
=(2n+1)2n+1-2.
考点二 数列的综合应用
1.(2018福建漳州期末调研测试,5)等差数列{an}和等比数列{bn}的首项均为1,公差与公比均为3,则ab1+ab2+ab3=(  )

答案 D 
2.(2018河南商丘第二次模拟,6)已知数列{an}满足a1=1,an+1-an≥2(n∈N*),且Sn为{an}的前n项和,则(  )
≥2n+1 ≥n2
≥2n-1 ≥2n-1
答案 B 
3.(2019福建晋江(安溪一中、养正中学、惠安一中、泉州实验中学四校)期中,18)已知数列{an}的前n项和为Sn,且Sn=2an-2.
(1)求数列{an}的通项公式;
(2)若数列n+1an的前n项和为Tn,求Tn以及Tn的最小值.
答案 (1)当n=1时,a1=≥2时,Sn-1=2an-1-2,
所以an=Sn-Sn-1=2an-2an-1,整理得anan-1=2(常数),
所以数列{an}是首项为2,公比为2的等比数列,故an=2n.
(2)令bn=n+1an,则bn=n+12n,
所以Tn=221+322+…+n+12n①,
12Tn=222+323+…+n+12n+1②,
①-②,得12Tn=32-n+32n+1,
所以Tn=3-n+32n,
令cn=n+32n,则cn+1cn=n+42n+6<1,
所以cn>cn+1,从而数列{Tn}是单调递增数列,
所以Tn≥T1=1.
故Tn的最小值为1.
4.(命题标准样题,16)设三角形的边长为不相等的整数,且最大边长为n,这些三角形的个数为an.
(1)求数列{an}的通项公式;
(2)在1,2,…,100中任取三个不同的整数,求它们可以是一个三角形的三条边长的概率.
附:1+22+32+…+n2=n(n+1)(2n+1)6.
答案 本题考查三角形三边的关系、数列的概念、通项公式,等差数列求和,,体现了理性思维、数学探究的学科素养,考查了逻辑推理能力、运算求解能力和创新能力,落实了基础性、综合性、创新性的考查要求.
(1)设x,y,n为满足题意的三角形的边长,不妨设x<y<n,
则x+y>n.
由题设,易得a1=a2=a3=0.
当n≥4,且n为偶数时,
若y≤n2,x不存在;若y=n2+1,则x为n2;若y=n2+2,则x为n2-1,n2,n2+1;……;
若y=n-1,则x为2,3,…,n-2.
所以an=1+3+…+(n-3)=(n-2)24.
当n>4,且n为奇数时,可得
an=2+4+…+(n-3)=(n-1)(n-3)4.
所以{an}的通项公式为
an=0,n=1,2,3,(n-2)24,n≥4,且n为偶数,(n-1)(n-3)4,n≥5,且n为奇数.
(2)记Sn为数列{an}(1)可得
S100=14×(22+42+…+982)+14×(2×4+4×6+…+96×98)
=(12+22+…+492)+12+22+…+482+(1+2+…+48)
=49×50×1956.
故所求概率为S100100×99×983×2×1=65132.
炼技法 提能力
【方法集训】
方法 数列求和的方法
1.(2018河南中原名校11月联考,10)设函数f(x)满足f(n+1)=2f(n)+n2(n∈N*),且f(1)=2,则f(40)=(  )

答案 D 
2.(2019吉林长春模拟,7)已知数列{an}的前n项和Sn=n2+2n,则数列1an·an+1的前6项和为(  )

答案 A 
3.(2019湘赣十四校第一次联考,17)已知函数f(x)=2 019·sinπx-π3(x∈R)的所有正零点构成递增数列{an}.
(1)求数列{an}的通项公式;
(2)设bn=2nan+23,求数列{bn}的前n项和Sn.
答案 (1)令f(x)=2 019sinπx-π3=0,
得πx-π3=kπ(k∈Z),则有x=13+k(k∈Z).
∵f(x)的所有正零点构成递增数列{an},
∴{an}是以13为首项,1为公差的等差数列,
∴an=13+(n-1)×1=n-23(n∈N*).
(2)由(1)知bn=n·2n.
∴Sn=1×21+2×22+3×23+…+(n-1)×2n-1+n×2n,①
∴2Sn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1,②
②-①得Sn=-1×21-22-23-…-2n+n×2n+1=n×2n+1-21(1-2n)1-2=(n-1)·2n+1+2.
4.(2018河南安阳第二次模拟,17)设等差数列{an}的前n项和为Sn,点(n,Sn)在函数f(x)=x2+Bx+C-1(B,C∈R)的图象上,且a1=C.
(1)求数列{an}的通项公式;
(2)记bn=an(a2n-1+1),求数列{bn}的前n项和Tn.
答案 (1)设数列{an}的公差为d,
则Sn=na1+n(n-1)2d=d2n2+a1-d2n,
又Sn=n2+Bn+C-1,两式对照得d2=1,C-1=0,
解得d=2,C=1,又因为a1=C,
所以a1=1,
所以数列{an}的通项公式为an=2n-1.
(2)由(1)知bn=(2n-1)(2·2n-1-1+1)=(2n-1)2n,
则Tn=1×2+3×22+…+(2n-1)·2n,
2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,
两式相减得
Tn=(2n-1)·2n+1-2(22+23+…+2n)-2
=(2n-1)·2n+1-2×22(1-2n-1)1-2-2
=(2n-3)·2n+1+6.
【五年高考】
A组 统一命题·课标卷题组
考点一 数列求和
 (2017课标全国Ⅲ,17,12分)设数列{an}满足a1+3a2+…+(2n-1)an=2n.
(1)求{an}的通项公式;
(2)求数列an2n+1的前n项和.
答案 (1)因为a1+3a2+…+(2n-1)an=2n,
故当n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1).
两式相减得(2n-1)an=2.
所以an=22n-1(n≥2).
又由题设可得a1=2,
从而{an}的通项公式为an=22n-1(n∈N*).
(2)记an2n+1的前n项和为Sn.
由(1)知an2n+1=2(2n+1)(2n-1)=12n-1-12n+1.
则Sn=11-13+13-15+…+12n-1-12n+1=2n2n+1.
考点二 数列的综合应用
 (2016课标全国Ⅰ,17,12分)已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=13,anbn+1+bn+1=nbn.
(1)求{an}的通项公式;
(2)求{bn}的前n项和.
答案 (1)由已知,a1b2+b2=b1,b1=1,b2=13,得a1=2,(3分)
所以数列{an}是首项为2,公差为3的等差数列,通项公式为an=3n-1.(5分)
(2)由(1)和anbn+1+bn+1=nbn得bn+1=bn3,(7分)
因此{bn}是首项为1,公比为13的等比数列.(9分)
记{bn}的前n项和为Sn,
则Sn=1-13n1-13=32-12×3n-1.(12分)
B组 自主命题·省(区、市)卷题组
考点一 数列求和
1.(2019天津,18,13分)设{an}是等差数列,{bn}是等比数列,=b1=3,b2=a3,b3=4a2+3.
(1)求{an}和{bn}的通项公式;
(2)设数列{cn}满足cn=1,n为奇数,bn2,+a2c2+…+a2nc2n(n∈N*).
答案 本题主要考查等差数列、,体现了数学运算的核心素养.
(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.
依题意,得3q=3+2d,3q2=15+4d,解得d=3,q=3,
故an=3+3(n-1)=3n,bn=3×3n-1=3n.
所以,{an}的通项公式为an=3n,{bn}的通项公式为bn=3n.
(2)a1c1+a2c2+…+a2nc2n
=(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2nbn)
=n×3+n(n-1)2×6+(6×31+12×32+18×33+…+6n×3n)
=3n2+6(1×31+2×32+…+n×3n).
记Tn=1×31+2×32+…+n×3n,①
则3Tn=1×32+2×33+…+n×3n+1,②
②-①得,2Tn=-3-32-33-…-3n+n×3n+1=-3(1-3n)1-3+n×3n+1=(2n-1)3n+1+32.
所以,a1c1+a2c2+…+a2nc2n=3n2+6Tn=3n2+3×(2n-1)3n+1+32=(2n-1)3n+2+6n2+92(n∈N*).
2.(2018浙江,20,15分)已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,{bn}满足b1=1,数列{(bn+1-bn)an}的前n项和为2n2+n.
(1)求q的值;
(2)求数列{bn}的通项公式.
答案 (1)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,
所以a3+a4+a5=3a4+4=28,
解得a4=8.
由a3+a5=20得8q+1q=20,
解得q=2或q=12,
因为q>1,所以q=2.
(2)设cn=(bn+1-bn)an,数列{cn}的前n项和为Sn.
由cn=S1,  n=1,Sn-Sn-1,n≥2,解得cn=4n-1.
由(1)可知an=2n-1,
所以bn+1-bn=(4n-1)·12n-1,
故bn-bn-1=(4n-5)·12n-2,n≥2,
bn-b1=(bn-bn-1)+(bn-1-bn-2)+…+(b3-b2)+(b2-b1)
=(4n-5)·12n-2+(4n-9)·12n-3+…+7·12+3.
设Tn=3+7·12+11·122+…+(4n-5)·12n-2,n≥2,
12Tn=3·12+7·122+…+(4n-9)·12n-2+(4n-5)·12n-1(n≥2),
所以12Tn=3+4·12+4·122+…+4·12n-2-(4n-5)·12n-1(n≥2),
因此Tn=14-(4n+3)·12n-2,n≥2,
又b1=1,所以bn=15-(4n+3)·12n-2.
3.(2017山东,19,12分)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.
(1)求数列{an}的通项公式;
(2){bn}为各项非零的等差数列,+1=bnbn+1,求数列bnan的前n项和Tn.
答案 (1)设{an}的公比为q,
由题意知:a1(1+q)=6,a12q=a1q2,
又an>0,解得a1=2,q=2,所以an=2n.
(2)由题意知:S2n+1=(2n+1)(b1+b2n+1)2=(2n+1)bn+1,
又S2n+1=bnbn+1,bn+1≠0,所以bn=2n+1.
令cn=bnan,则cn=2n+12n.
因此Tn=c1+c2+…+cn=32+522+723+…+2n-12n-1+2n+12n,
又12Tn=322+523+724+…+2n-12n+2n+12n+1,
两式相减得12Tn=32+12+122+…+12n-1-2n+12n+1,
所以Tn=5-2n+52n.
4.(2017北京,15,13分)已知等差数列{an}和等比数列{bn}满足a1=b1=1,a2+a4=10,b2b4=a5.
(1)求{an}的通项公式;
(2)求和:b1+b3+b5+…+b2n-1.
答案 (1)设等差数列{an}的公差为d.
因为a2+a4=10,所以2a1+4d=10.
解得d=2.
所以an=2n-1.
(2)设等比数列{bn}的公比为q.
因为b2b4=a5,所以b1qb1q3=9.
解得q2=3.
所以b2n-1=b1q2n-2=3n-1.
从而b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=3n-12.
5.(2016天津,18,13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且1a1-1a2=2a3,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(-1)nbn2}的前2n项和.
答案 (1)设数列{an},有1a1-1a1q=2a1q2,解得q=2,或q=-1.
又由S6=a1·1-q61-q=63,知q≠-1,所以a1·1-261-2=63,得a1==2n-1.
(2)由题意,得bn=12(log2an+log2an+1)=12(log22n-1+log22n)=n-12,
即{bn}是首项为12,公差为1的等差数列.
设数列{(-1)nbn2}的前n项和为Tn,则
T2n=(-b12+b22)+(-b32+b42)+…+(-b2n-12+b2n2)
=b1+b2+b3+b4+…+b2n-1+b2n=2n(b1+b2n)2=2n2.
考点二 数列的综合应用
1.(2018北京,15,13分)设{an}是等差数列,且a1=ln 2,a2+a3=5ln 2.
(1)求{an}的通项公式;
(2)求ea1+ea2+…+ean.
答案 (1)设{an}的公差为d.
因为a2+a3=5ln 2,
所以2a1+3d=5ln 2.
又a1=ln 2,所以d=ln 2.
所以an=a1+(n-1)d=nln 2.
(2)因为ea1=eln 2=2,eanean-1=ean-an-1=eln 2=2,
所以{ean}是首项为2,公比为2的等比数列.
所以ea1+ea2+…+ean=2×1-2n1-2=2(2n-1).
2.(2017天津,18,13分)已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通项公式;
(2)求数列{a2nbn}的前n项和(n∈N*).
答案 (1)设等差数列{an}的公差为d,等比数列{bn}+b3=12,得b1(q+q2)=12,
而b1=2,所以q2+q-6=0.
又因为q>0,解得q=2.
所以,bn=2n.
由b3=a4-2a1,可得3d-a1=8①.
由S11=11b4,可得a1+5d=16②,
联立①②,解得a1=1,d=3,
由此可得an=3n-2.
所以,{an}的通项公式为an=3n-2,{bn}的通项公式为bn=2n.
(2)设数列{a2nbn}的前n项和为Tn,由a2n=6n-2,有Tn=4×2+10×22+16×23+…+(6n-2)×2n,
2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,
上述两式相减,得
-Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1
=12×(1-2n)1-2-4-(6n-2)×2n+1
=-(3n-4)2n+2-16.
得Tn=(3n-4)2n+2+16.
所以,数列{a2nbn}的前n项和为(3n-4)2n+2+16.
3.(2016浙江,17,15分)设数列{an}=4,an+1=2Sn+1,n∈N*.
(1)求通项公式an;
(2)求数列{|an-n-2|}的前n项和.
答案 (1)由题意得a1+a2=4,a2=2a1+1,则a1=1,a2=3.
又当n≥2时,由an+1-an=(2Sn+1)-(2Sn-1+1)=2an,
得an+1==3=3a1,所以数列{an}是首项为1,公比为3的等比数列.
所以,数列{an}的通项公式为an=3n-1,n∈N*.
(2)设bn=|3n-1-n-2|,n∈N*,则b1=2,b2=1.
当n≥3时,由于3n-1>n+2,故bn=3n-1-n-2,n≥3.
设数列{bn}的前n项和为Tn,则T1=2,T2=3.
当n≥3时,Tn=3+9(1-3n-2)1-3-(n+7)(n-2)2=3n-n2-5n+112,
经检验,n=2时也符合.
所以Tn=2,     n=1,3n-n2-5n+112,n≥2,n∈N*.
C组 教师专用题组
考点一 数列求和
1.(2015湖北,19,12分)设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}=a1,b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式;
(2)当d>1时,记cn=anbn,求数列{cn}的前n项和Tn.
解析 (1)由题意有,10a1+45d=100,a1d=2,即2a1+9d=20,a1d=2,
解得a1=1,d=2,或a1=9,d==2n-1,bn=2n-1,或an=19(2n+79),bn=9·29n-1.
(2)由d>1,知an=2n-1,bn=2n-1,故cn=2n-12n-1,
于是Tn=1+32+522+723+924+…+2n-12n-1,①
12Tn=12+322+523+724+925+…+2n-12n.②
①-②可得
12Tn=2+12+122+…+12n-2-2n-12n=3-2n+32n,
故Tn=6-2n+32n-1.
2.(2015安徽,18,12分)已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(1)求数列{an}的通项公式;
(2)设Sn为数列{an}的前n项和,bn=an+1SnSn+1,求数列{bn}的前n项和Tn.
答案 (1)由题设知a1·a4=a2·a3=8,
又a1+a4=9,可解得a1=1,a4=8或a1=8,a4=1(舍去).
由a4=a1q3得公比为q=2,故an=a1qn-1=2n-1.
(2)Sn=a1(1-qn)1-q=2n-1,又bn=an+1SnSn+1=Sn+1-SnSnSn+1=1Sn-1Sn+1,
所以Tn=b1+b2+…+bn=1S1-1S2+1S2-1S3+…+1Sn-1Sn+1=1S1-1Sn+1
=1-12n+1-1.
3.(2015山东,19,12分)已知数列{an}是首项为正数的等差数列,数列1an·an+1的前n项和为n2n+1.
(1)求数列{an}的通项公式;
(2)设bn=(an+1)·2an,求数列{bn}的前n项和Tn.
答案 (1)设数列{an}的公差为d.
令n=1,得1a1a2=13,
所以a1a2=3.
令n=2,得1a1a2+1a2a3=25,
所以a2a3=15.
解得a1=1,d=2,
所以an=2n-1.
(2)由(1)知bn=2n·22n-1=n·4n,
所以Tn=1·41+2·42+…+n·4n,
所以4Tn=1·42+2·43+…+n·4n+1,
两式相减,得-3Tn=41+42+…+4n-n·4n+1
=4(1-4n)1-4-n·4n+1
=1-3n3×4n+1-43.
所以Tn=3n-19×4n+1+49=4+(3n-1)4n+19.
4.(2014课标Ⅰ,17,12分)已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.
(1)求{an}的通项公式;
(2)求数列an2n的前n项和.
答案 (1)方程x2-5x+6=0的两根为2,3,由题意得a2=2,a4=3.
设数列{an}的公差为d,则a4-a2=2d,故d=12,从而a1=32.
所以{an}的通项公式为an=12n+1.
(2)设an2n的前n项和为Sn,由(1)知an2n=n+22n+1,则
Sn=322+423+…+n+12n+n+22n+1,
12Sn=323+424+…+n+12n+1+n+22n+2.
两式相减得12Sn=34+123+…+12n+1-n+22n+2
=34+141-12n-1-n+22n+2.
所以Sn=2-n+42n+1.
5.(2014湖北,19,12分)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.
答案 (1)设数列{an}的公差为d,依题意,得2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),
化简得d2-4d=0,解得d=0或d=4.

§6.4-数列的综合应用(试题部分) 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数20
  • 收藏数0 收藏
  • 顶次数0
  • 上传人rongfunian
  • 文件大小75 KB
  • 时间2025-02-12