该【专题12-二次函数(解析版) 】是由【286919636】上传分享,文档一共【2】页,该文档可以免费在线阅读,需要了解更多关于【专题12-二次函数(解析版) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。专题12 二次函数
1.二次函数的概念:一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。
=ax2 +bx+c(a≠0)的图像与性质
(1)对称轴:
(2)顶点坐标:
(3)与y轴交点坐标(0,c)
(4)增减性:
当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;
当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小。
。
(1)一般式 y=ax2 +bx+c(a≠0).
已知图像上三点或三对、的值,通常选择一般式.
(2)顶点式
已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式
已知图像与轴的交点坐标、,通常选用交点式。
4.根据图像判断a,b,c的符号
(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y轴交点坐标(0,c)
5.二次函数与一元二次方程的关系
抛物线y=ax2 +bx+c与x轴交点的横坐标x1, x2 是一元二次方程ax2 +bx+c=0(a≠0)的根。
抛物线y=ax2 +bx+c,当y=0时,抛物线便转化为一元二次方程ax2 +bx+c=0
>0时,一元二次方程有两个不相等的实根,二次函数图像与x轴有两个交点;
=0时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;
<0时,一元二次方程有不等的实根,二次函数图像与x轴没有交点。
6.函数平移规律:左加右减、
(1)配方为: ,确定顶点(h,k)
(2)对x轴, 左加右减;对y轴, 上加下减。
二次函数是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应的纵坐标相等,那么对称轴
【例题1】(2019湖北荆州)二次函数y=﹣2x2﹣4x+5的最大值是 .
x(元)
15
20
30
…
y(袋)
25
20
10
…
专题12-二次函数(解析版) 来自淘豆网m.daumloan.com转载请标明出处.