下载此文档

空间位置关系与证明.doc


文档分类:中学教育 | 页数:约11页 举报非法文档有奖
1/11
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/11 下载此文档
文档列表 文档介绍
第二十三讲空间位置关系与证明
★★★高考在考什么
【考题回放】
1、(2008上海卷13) 给定空间中的直线l及平面a,条件“直线l与平面a内无数条直线都垂直”是“直线l与平面a垂直”的( C )

2、(2008安徽卷4).已知是两条不同直线,是三个不同平面,下列命题中正确的是(D )
A. B
C. D.
3、(2008湖南卷5)设有直线m、n和平面、.下列四个命题中,正确的是( D )
∥,n∥,则m∥n
,n,m∥,n∥,则∥
,m,则m
,m,m,则m∥
4、(2008福建卷6)如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为D
A. B.
C. D.
C
D
E
A
B
5(2008全国一18)四棱锥中,底面为矩形,侧面底面,,,.
(Ⅰ)证明:;
(Ⅱ)设与平面所成的角为,求二面角的大小.
18题图
解:(1)取中点,连接交于点,
,,
又面面,面,
.
,
,,即,
面,.
(2)在面内过点作的垂线,垂足为.
,,面,,
则即为所求二面角的平面角.
,,,
,则,
,即二面角的大小.
6、(2008安徽卷)如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
方法一(综合法)
(1)取OB中点E,连接ME,NE


(2)
为异面直线与所成的角(或其补角)
作连接


,
所以与所成角的大小为
(3)点A和点B到平面OCD的距离相等,连接OP,过点A作
于点Q,
又,线段AQ的长就是点A到平面OCD的距离
,
,所以点B到平面OCD的距离为
方法二(向量法)
作于点P,如图,分别以AB,AP,AO所在直线为轴建立坐标系
,
(1)
设平面OCD的法向量为,则

取,解得
(2)设与所成的角为,
, 与所成角的大小为
(3)设点B到平面OCD的距离为,则为在向量上的投影的绝对值,
由,
★★高考要考什么
线与线的位置关系:平行、相交、异面;
线与面的位置关系:平行、相交、线在面内;
面与面的位置关系:平行、相交;
:
;
★★★高考将考什么
【范例1】(07天津)如图,在四棱锥中,底面,,,是的中点.
(Ⅰ)证明;
(Ⅱ)证明平面;
(Ⅲ)求二面角的大小.
(Ⅰ)证明:在四棱锥中,
因底面,平面,故.
,平面.
而平面,.
(Ⅱ)证明:由,,可得.
是的中点,.
由(Ⅰ)知,,且,所以平面.
而平面,.
底面在底面内的射影是,,.
又,综上得平面.
(Ⅲ)解法一:过点作,垂足为,(Ⅱ)知,平面,在平面内的射影是,则.
因此是二面角的平面角.
由已知,,
可得.
在中,,,
则.
在中,.
解法二:由题设底面,平面,则平面平面,交线为.
过点作,垂足为,,垂足为,连结,.
由已知,可得,设,
可得.
,.
于是,.
在中,.
所以二面角的大小是.
所以二面角的大小是.
M
变式:如图,在五面体中,点是矩形的对角线的交点,面是等边三角形,棱.
(1)证明//平面;
(2)设,证明平面.
证明:(Ⅰ)取CD中点M,连结OM.
在矩形ABCD中,,又,则,
连结EM,于是四边形EFOM为平行四边形.
又平面CDE, EM平面CDE, ∴ FO∥平面CDE
(Ⅱ)证明:连结FM,由(Ⅰ)和已知条件,在等边△CDE中,
且.
因此平行四边形EFOM为菱形,从而EO⊥FM而FM∩CD=M,
∴CD⊥平面EOM,从而CD⊥EO. 而,所以EO⊥平面CDF.
A
B
C
D
【点晴】本小题考查直线与平面平行、直线与平面垂直等基础知识,注意线面平行和线面垂直判定定理的使用,考查空间想象能力和推理论证能力。
【范例2】(07安徽)如图,在六面体中,四边形是边长为2的正方形,四边形是边长为1的正方形,平面
,平面,.
(Ⅰ)求证:与共面,与共面.
(Ⅱ)求证:平面平面;
(Ⅲ)求二面角的大小(用反三角函数值表示).
证明:以为原点,以所在直线分别为轴,
轴,轴建立空间直角坐标系如图,
则有

空间位置关系与证明 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数11
  • 收藏数0 收藏
  • 顶次数0
  • 上传人mh900965
  • 文件大小1.75 MB
  • 时间2018-03-02
最近更新