下载此文档

DSP语音论文.doc


文档分类: | 页数:约22页 举报非法文档有奖
1/22
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/22 下载此文档
文档列表 文档介绍
第一章语音信号处理概述
语音信号处理简介
语音识别技术以语音信号处理为研究对象,涉及语言学、计算机科学、信号处理、生理学、心理学等诸多领域,是模式识别的重要分支。该技术有非常广阔的应用前景,从60年代至今,世界许多著名公司不惜投入巨资进行开发研究。我国的北京大学和中科院声学研究所一直紧跟,进行汉语语音识别技术的研究工作。50年代,是语音识别研究工作的开始时期,它以贝尔实验室研制成功可识别十个数字的系统为标志。60年代,计算机广泛应用于语音识别的研究工作中,动态规划和线性预测分析技术是这一时期的重要成果。70年代,语音识别的研究取得了突破性进展。基于线性预测倒谱和动态时间规整技术的特定人孤立语音识别系统被研制成功,提出了矢量量化和隐马尔可夫模型理论。80年代,语音识别的研究工作进一步深入。其标志是人工神经元网络在语音识别中的成功应用。90年代,随着计算机技术的飞速发展,语音识别正从研究走向实用,其研究成果已达到相当高的水平。2000年,正象美国微软公司总裁所说的那样,语音识别技术将使计算机丢掉键盘和鼠标。这无疑将改变我们许多人的工作和生活方式。
语音信号处理的前景
尽管语音识别的研究工作迄今已近50年,但仍未有突破性进展,主要原因如下:
语音识别系统的适应性差。全世界有近百种官方语言,每种语言有多达几十种方言,同种语言的不同方言在语音上相差悬殊,这样,随着语言环境的改变,系统性能会变得很差。
在强噪声干扰环境下语音识别困难。由于语音数据大部分都是在接近理想的条件下采集的,语音识别的编码方案在研制时都要在高保真设备上录制语音,尤其要在无噪环境下录音。然而,当语音处理由实验室走向实际应用时,环境噪声的存在所带来的问题就变得越来越重要。特别是线性预测作为语音处理技术中最有效的手段,恰恰是最容易受噪声影响的。
体态语言难以识别。有人在讲话时习惯用眼神、手势、面部表情等动作协助表达自己的思想。由于这种体态语言的含义与个人习惯、文化背景、宗教信仰及生存地域等因素有关,其信息提取非常困难。
对于人类由中枢神经控制的记忆机理、听觉理解机理、联想判断机理等,人们目前仍知之甚少。
语音识别系统
根据对说话人说话方式的要求,可分为孤立词语音识别系统,连接词语音识别系统和连续语音识别系统。
根据对说话人的依赖程度,可分为特定人语音识别系统和非特定人语音识别系统。根据词汇量大小,可分为小词汇量、中等词汇量、大词汇量及无限词汇量语音识别系统。
孤立单词识别系统,孤立单词指单词之间有停顿,这可使识别问题大为简化。因为单词的端点检测(即检测单词的起点和终点)比较容易,而且单词之间协同发音影响可减至最低。此外,一般对孤立单词发音比较认真,由于单词之间必须有停顿,读起来就不能太流利。鉴于以上原因,孤立单词识别系统存在的问题最少,其许多技术可以用于单词挑选和连续语音识别系统。
连续语音识别系统有两个重要问题是孤立单词识别系统所没有的:
切分,即对单词之间边界位置的确定。因为语言中短语的数量太大,对整个短语进行识别显然是不可能的,必须把输入的语流切分为更小的组成部分。这就要求系统必须能够识别单词之间的边界。这一点比较困难,因为确定单词之间的边界位置没有现成的方法。
发音变化,即关联语言的发音比孤立单词发音更随便,受协同发音的影响更为严重。解决上述问题通常采用扩展动态时间规整技术。
语音理解一词出自美国远景研究计划局资助的一个庞大的连续语音识别研究项目,其目标称为语音理解系统。众所周知,只有人才能很好地识别语音,因为人对语音有广泛的知识,人对要说的话有预见性和感知分析能力,因此,指望机器对语言的识别能力超过人是不现实的,最好的办法是使机器也能“理解”语言,并且能象人一样运用这种理解力。由于在人工智能领域对知识的应用和知识的表示问题更加感性趣,这对语音识别来说无疑是有力地鼓舞。
运用这种理解力可以指望系统:
能排除噪声和嘈杂声(即含糊不清或无关的语言);
能理解上下文的意思并能用它来纠正错误,澄清不确定的语义;
能够处理不合语法或不完整的语句。由此看来,语音理解系统的主要问题是知识的表示和系统的组织问题。
与其它语音处理问题相比,该系统更加依赖于人工智能研究。
语音识别的关键技术
语音识别的关键技术包括特征参数提取技术、模式匹配准则及模型训练技术、语音识别单元选取。
特征参数提取技术:所谓特征参数提取,就是从语言信号中提取用于语音识别的有用信息。研究人员已对许多可以表征说话人个人特征的语音特征进行了探讨,大多数特征选取方案不是试图集中在声道构造的个体差异方面,就是试图集中在说话习惯的个人特征方面。
特征参数提取所考虑的参数为:
(1)单词中选定位

DSP语音论文 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数22
  • 收藏数0 收藏
  • 顶次数0
  • 上传人mh900965
  • 文件大小663 KB
  • 时间2018-03-17
最近更新