下载此文档

切线长定理课件.ppt


文档分类: | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17 下载此文档
文档列表 文档介绍
切线长定理
过⊙O外一点作⊙O的切线
O
·
P
A
B
O
一、切线长定义
经过圆外一点做圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长。
·
O
P
A
B
定理形成
切线与切线长的区别与联系:
(1)切线是一条与圆相切的直线;
(2)切线长是指切线上某一点与切点间的线段的长。
若从⊙O外的一点引两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论?并证明你所发现的结论。
A
P
O

B
PA = PB
∠OPA=∠OPB
证明:∵PA,PB与⊙O相切,点A,B是切点
∴OA⊥PA,OB⊥PB 即∠OAP=∠OBP=90°
∵ OA=OB,OP=OP
∴Rt△AOP≌Rt△BOP(HL)
∴ PA = PB ∠OPA=∠OPB
试用文字语言叙述你所发现的结论
PA、PB分别切⊙O于A、B
PA = PB
∠OPA=∠OPB
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
二、切线长定理
A
P
O

B
几何语言:
反思:切线长定理为证明线段相等、角相等提供了新的方法
我们学过的切线,常有五个性质:
1、切线和圆只有一个公共点;
2、切线和圆心的距离等于圆的半径;
3、切线垂直于过切点的半径;
4、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
四个
A
P
O

B
M
若连结两切点A、B,?并给出证明.
OP垂直平分AB
证明:∵PA,PB是⊙O的切线,点A,B是切点
∴PA = PB ∠OPA=∠OPB
∴△PAB是等腰三角形,PM为顶角的平分线
∴OP垂直平分AB
A
P
O

B
若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.
CA=CB
证明:∵PA,PB是⊙O的切线,点A,B是切点
∴PA = PB ∠OPA=∠OPB
∴PC=PC
∴△PCA ≌△PCB ∴AC=BC
C
、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。
B
A
P
O
C
E
D
(1)写出图中所有的垂直关系
OA⊥PA,OB ⊥PB,AB ⊥OP
(3)写出图中所有的全等三角形
△AOP≌△BOP, △AOC≌△BOC, △ACP≌△BCP
(5)写出图中所有的等腰三角形
△ABP △AOB
(6)若PA=4、PD=2,求半径OA
(2)写出图中与∠OAC相等的角
∠OAC=∠OBC=∠APC=∠BPC

P
B
A
O
(3)连结圆心和圆外一点
(2)连结两切点
(1)分别连结圆心和切点
反思:在解决有关圆的切线长的问题时,往往需要我们构建基本图形。
反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。

切线长定理课件 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数17
  • 收藏数0 收藏
  • 顶次数0
  • 上传人sxlw2014
  • 文件大小977 KB
  • 时间2018-03-20
最近更新