切线长定理
过⊙O外一点作⊙O的切线
O
·
P
A
B
O
一、切线长定义
经过圆外一点做圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长。
·
O
P
A
B
定理形成
切线与切线长的区别与联系:
(1)切线是一条与圆相切的直线;
(2)切线长是指切线上某一点与切点间的线段的长。
若从⊙O外的一点引两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论?并证明你所发现的结论。
A
P
O
。
B
PA = PB
∠OPA=∠OPB
证明:∵PA,PB与⊙O相切,点A,B是切点
∴OA⊥PA,OB⊥PB 即∠OAP=∠OBP=90°
∵ OA=OB,OP=OP
∴Rt△AOP≌Rt△BOP(HL)
∴ PA = PB ∠OPA=∠OPB
试用文字语言叙述你所发现的结论
PA、PB分别切⊙O于A、B
PA = PB
∠OPA=∠OPB
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
二、切线长定理
A
P
O
。
B
几何语言:
反思:切线长定理为证明线段相等、角相等提供了新的方法
我们学过的切线,常有五个性质:
1、切线和圆只有一个公共点;
2、切线和圆心的距离等于圆的半径;
3、切线垂直于过切点的半径;
4、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
四个
A
P
O
。
B
M
若连结两切点A、B,?并给出证明.
OP垂直平分AB
证明:∵PA,PB是⊙O的切线,点A,B是切点
∴PA = PB ∠OPA=∠OPB
∴△PAB是等腰三角形,PM为顶角的平分线
∴OP垂直平分AB
A
P
O
。
B
若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.
CA=CB
证明:∵PA,PB是⊙O的切线,点A,B是切点
∴PA = PB ∠OPA=∠OPB
∴PC=PC
∴△PCA ≌△PCB ∴AC=BC
C
、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。
B
A
P
O
C
E
D
(1)写出图中所有的垂直关系
OA⊥PA,OB ⊥PB,AB ⊥OP
(3)写出图中所有的全等三角形
△AOP≌△BOP, △AOC≌△BOC, △ACP≌△BCP
(5)写出图中所有的等腰三角形
△ABP △AOB
(6)若PA=4、PD=2,求半径OA
(2)写出图中与∠OAC相等的角
∠OAC=∠OBC=∠APC=∠BPC
。
P
B
A
O
(3)连结圆心和圆外一点
(2)连结两切点
(1)分别连结圆心和切点
反思:在解决有关圆的切线长的问题时,往往需要我们构建基本图形。
反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。
切线长定理课件 来自淘豆网m.daumloan.com转载请标明出处.