下载此文档

14.1同底数幂的乘法、幂的乘方、积的乘方.doc


文档分类: | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
幂的运算
:am·an=am+n (m, n是自然数)
同底数幂的乘法法则是本章中的第一个幂的运算法则,也是整式乘法的主要依据之一。学习这个法则时应注意以
下几个问题:
(1)先弄清楚底数、指数、幂这三个基本概念的涵义。
(2)它的前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式,如:
(2x+y)2·(2x+y)3=(2x+y)5,底数就是一个二项式(2x+y)。
(3)指数都是正整数
(4)这个法则可以推广到三个或三个以上的同底数幂相乘,即am·an·ap....=am+n+p+... (m, n, p都是自然数)。
(5)不要与整式加法相混淆。乘法是只要求底数相同则可用法则计算,即底数不变指数相加,如:x5·x4=x5+4=x9;
而加法法则要求两个相同;底数相同且指数也必须相同,实际上是幂相同系数相加,
如-2x5+x5=(-2+1)x5=-x5,而x5+x4就不能合并。
:(1) (- )(- )2(- )3 (2) -a4·(-a)3·(-a)5
解:(1) (- )(- )2(- )3 分析:①(- )就是(- )1,指数为1
=(- )1+2+3 ②底数为- ,不变。
=(- )6 ③指数相加1+2+3=6
= ④乘方时先定符号“+”,再计算的6次幂
解:(2) -a4·(-a)3·(-a)5 分析:①-a4与(-a)3不是同底数幂
=-(-a)4·(-a)3·(-a)5 可利用-(-a)4=-a4变为同底数幂
=-(-a)4+3+5 ②本题也可作如下处理:
=-(-a)12 -a4·(-a)3·(-a)5=-a4(-a3)(-a5)
=-a12 =-(a4·a3·a5)=-a12
(1) (x-y)3(y-x)(y-x)6
解:(x-y)3(y-x)(y-x)6 分析:(x-y)3与(y-x)不是同底数幂
=-(x-y)3(x-y)(x-y)6 可利用y-x=-(x-y), (y-x)6=(x-y)6
=-(x-y)3+1+6 变为(x-y)为底的同底数幂,再进行计算。
=-(x-y)10
:x5·xn-3·x4-3x2·xn·x4
解:x5·xn-3·x4-3x2·xn·x4 分析:①先做乘法再做减法
=x5+n-3+4-3x2+n+4 ②运算结果指数能合并的要合并
=x6+n-3x6+n ③3x2即为3·(x2)
=(1-3)x6+n ④x6+n,与-3x6+n是同类项,
=-2x6+n 合并时将系数进行运算(1-3)=-2底数和指数不变。

(am)n=amn,与积的乘方(ab)n=anbn
(1)幂的乘方,(am)n=amn,(m, n都为正整数)运用法则时注意以下以几点:

①幂的底数a可以是具体的数也可以是多项式。如[(x+y)2]3的底数为(x+y),是一个多项式,
[(x+y)2]3=(x+y)6
②要和同底数幂的乘法法则相区别,不要出现下面的错误。如: (a3)4=a7; [(-a)3]4=(-a)7; a3·a4=a12
(2)积的乘方(ab)n=a

14.1同底数幂的乘法、幂的乘方、积的乘方 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人sxlw2017
  • 文件大小71 KB
  • 时间2018-03-21