动点问题
1. 已知:如图,△ABC中,∠C=90°,AC=3厘米,CB=、Q分别从A、C两点同时按顺时针方向沿△,P、、Q的运动速度分别为1厘米/秒、2厘米/秒,设点P运动时间为(秒).
(1)当时间为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2;
(2)当点P、Q运动时,△ABC围成阴影部分面积为S(厘米2),求出S与时间的函数关系式,并指出自变量的取值范围;
(3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由.
2. 如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)
3. 已知正方形ABCD的边长AB=k(k是正整数),正△PAE的顶点P在正方形内,顶点E在边AB上,且AE=1. 将△PAE在正方形内按图1中所示的方式,沿着正方形的边AB、BC、CD、DA、AB、……连续地翻转n次,使顶点P第一次回到原来的起始位置.
图1
(1)如果我们把正方形ABCD的边展开在一直线上,那么这一翻转过程可以看作是△PAE在直线上作连续的翻转运动. 图2是k=1时,△PAE沿正方形的边连续翻转过程的展开示意图. 请你探索:若k=1,则△PAE沿正方形的边连续翻转的次数n= 时,顶点P第一次回到原来的起始位置.
图2
(2)若k=2,则n= 时,顶点P第一次回到原来的起始位置;若k=3,则
n= 时,顶点P第一次回到原来的起始位置.
(3)请你猜测:使顶点P第一次回到原来的起始位置的n值与k之间的关系(请用含k的代数式表示n).
4. 已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长.
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.
图1
图2
5. 如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,.
6. 如图一,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A点坐标为(10,0),C点坐标为(0,6),D是BC边上的动点(与点B,C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,将△BDE沿DE翻折,得到△GDE,并使直线DG、DF重合。
(1)如图二,若翻折后点F落在OA边上,求直线DE的函数关系式;
(2)设D(a,6
2011年-2012年中考动点问题大全 来自淘豆网m.daumloan.com转载请标明出处.